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Microgravity Combustion Research: 1999 Program and Results

The Microgravity Combustion Science Branch
National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Summary

The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial

development of space for enhancing the quality of life on Earth is particularly suitable to the field of combustion.
This document reviews the current status of microgravity combustion research and derived information. It is the

fourth in a series of timely surveys, all published as NASA Technical Memoranda, and it covers largely the period

from 1995 to early 1999. The scope of the review covers three program areas: fundamental studies, applications to

fire safety and other fields, and general measurements and diagnostics. The document also describes the opportuni-

ties for Principal Investigator participation through the NASA Research Announcement program and the NASA

Glenn Research Center low-gravity facilities available to researchers.

Introduction

The purpose of this document is to summarize the status of NASA-sponsored and other microgravity-

combustion research through descriptions of current pr¢_jects and their significant findings and applications.

In the past several decades, the use of the nonconvective, microgravity environment of Earth-orbiting space

vehicles as a laboratory for a variety of tests and processes has been an ever increasing contributor to scientific

knowledge. Indeed, the results of this microgravity research promise information and benefits not only in fundamen-

tal science, but also in applied technology, commercial "'spin-offs,'" and future extraterrestrial exploration.
The National Aeronautics and Space Administration (NASA) Microgravity Research Program encompasses a

group of scientific disciplines wherein fundamental knowledge can be extended through studies conducted over a

range of gravitational accelerations. Combustion is a key topic within the program. In itself, combustion is one of

the most important processes in the worldwide economy. Combustion underlies nearly all of energy generation,

domestic heating, and transportation propulsion, and it contributes to a large fraction of the unit operations for pro-

ducing raw and manufactured materials and in industrial fabrication, construction, and assembly. In a negative
sense, uncontrolled combustion leads to the continuing, costly toll from the effects of fires and atmospheric

pollution.
The mierogravily environment has several characteristics that are particularly useful for fundamental and

applied research in combustion science. For example:

• Buoyancy-induced flow is nearly eliminated, simplifying the study of quiescent and low-flow combustion

fields.
• Weaker forces and flows normally obscured by strong buoyant motions, for example, electrostatics,

thermocapillarity, and diffusion, may be isolated.
• Gravitalional settling is nearly eliminated, allowing the stabilization of free droplets, particles, bubbles, mists,

and arrays for basic ignition and combustion sludies.

• Expanded experimental time or length scales become feasible, due to the elimination of buoyancy-driven
disturbances.

While microgravity is the operational environment associated with Earth-orbiling space laboratories, effective
combustion studies can also be conducted in other short-Lime, low-gravity environments. Tests in suborbital sound-

ing rockets, parabolic-trajectory airplanes, and free-fall drop towers supplement to a great extent the limited on-orbit

test opportunities on the U.S. Shuttle Orbiter, its payload-bay laboratories, the Orbital Station Mir, and the in-assem-

bly International Space Station. In fact, the contributions of research conducted in these so-called "'ground-based"
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low-gravityandmicrogravityfacilitieshavebeenessentialtotheacknowledgedsuccessofthemicrogravity-
combustionprogram.Additionalcontributionsofhighvaluetomicrogravitycombustionsciencecomefrom"nor-
mal-gravity"referencegroundtestsandfromanalyticalmodeling.

NASAoffersaStrategicPlantoadvancethemissionoftheAgency.Amongtheprimarybusinessareasdefined
inthePlanisthcenterpriseofHumanExplorationandDevelopmentofSpace(HEDS).Twoofthesixnear-term
objectivesof theHEDSenterprisearepertinenttotheresearchreviewedherein,namely,to:

• Usetheenvironmentofspacetoexpandscientificknowledge,
• EnablethecommercialdevelopmentofspaceandshareHEDSknowledge,technologies,andassetsthat

promisetoenhancethequalityoflifeonEarth.

In 1998,aprogramoperatingplanwasadoptedtoguidetheMicrogravityResearchProgramandmakeit con-
formtothestrategicobjectivesoftheHEDSenterprise.Theplandefinedasetofnearlytwentyperformancegoals
torallthedisciplineswithintheprogram.Ofthesegoals,severalareapplicabletocombustion,andtwo,inparticu-
lar,serveasthejustificationstortheattentiongiventothemicrogravity-combustionprogram.Thesegoalsareto:

• Enableincreasedcombustion-systemefficiency,reducedpollution,andmitigationoffirerisksthroughin-
sightsanddatabasesobtainableonlythroughmicrogravityexperiments,

• Developmethods,databases,andvalidatingtestsformaterialflammabilitycharacterization,hazardreduction,
andfiredetection/suppressionstrategiesforspacecraftandextraterrestrialhabitats.

Theprimarypurposeofthisreviewistopresentthestatusofmicrogravity-combustionresearchandderived
knowledge(principallyfromNASA-supportedprograms),describedinthreegeneralprogramareas:fundamental
studies,applicationstofiresafetyandotherfields,andgeneralmeasurementsanddiagnostics.Thedescriptionof
projectsandtheirfindingsiscategorizedintotopicswithinthethreeprogramareas,andit isconfinedlargelytothe
progressmadeinthepastfouryears.Topicalreportsarenotintendedtobecomprehensivecompilationsofevery
investigationsupportedbytheprogram;and,hence,theydonotciteindividualinvestigators.A bibliographyfollow-
ingtheprogram-areareviewscoverstheliteratureappearingduringthetimeperiodofthereviews.Thedocumentis,
toalargedegree,anupdateofthreeprevioustimelyreviewsofmicrogravity-combustionscienceproducedbythe
NASALewisResearchCenter(nowtheNASAGlennResearchCenter).Themostrecentoverview,Microgravity
CombustionScience:1995ProgramUpdate,NASATM-106858,isstillinprint.

A secondarypurposeofthisreviewis theencouragementoftheparticipationofnewPrincipalInvestigatorsin
analyticalandexperimentalmicrogravity-combustionresearchthroughthefrequentopportunitiesofferedbyopen
competitivesolicitations,i.e., the NASA Research Announcements. The document includes, therelore, information

on the solicitation process and its response requirements and a description of the NASA Glenn low-gravity test faci-

lities and the spacecraft experiment hardware and accommodations available to researchers.

This review has been written by members of the NASA Glenn Research Center Microgravity Combustion Sci-

ence Branch. NASA Glenn is a supporting center in the Microgravity Research Program, and it is assigned the man-

agement of the discipline of combustion science. Members of the National Center for Microgravity Research on

Fluids and Combustion at NASA Glenn and some of the outside Principal Investigators have also contributed to this

document. This valuable assistance is greatly appreciated.

Program Status: Fundamental Studies

The primary purpose of microgravity-combustion research is in extending fundamental knowledge. Fresh

insights and databases obtainable only through microgravity experiments can advance the basic understanding of

flame phenomena, thereby enabling the development of quantitative process models. Industry can use such data for

the beneficial control of combustion processes to yield increased efficiencies, reduced pollution, and mitigation of
fire risks. Microgravity-combustion research can also contribute to the fundamental understanding of combustion-

synthesized materials, which fosters the production of novel materials.

Currently, the Microgravity Combustion Science program is supporting 58 ground-based studies. 13 flight-

definition studies, six flight programs, and three Glovebox investigations. The maiority of these projects, 54 of the
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ground-basedstudies,tenoftheflight-definitionstudies,andalloftheflightprogramsandtheGIoveboxinvestiga-
tions,bchmgstotheprogramareaoffundamentalstudies.

Theprogramareaoffundamental-combustionstudiescoversthefollowingtopics,whicharetakenfromthe
descriptionoftheNASAMicrogravityResearchProgramperformancegoals:

• Premixedgascombustion
• Nonpremixedgascombustion
• Dropletandparticlccombustion
• Sprayandaerosolcombustion
• Sootprocesses
• Combustionoverliquidandsolidfuelsurfaces
• Smoldering
• Metalcombustion
• Combustionsynthesis

Premixed Gas Combustion

Premixed combustion occurs in a variety of practical situations ranging from laboratory burners to auto engines

to explosions. Many of these phenomena have becn investigated extensively in ground laboratories undcr the ever-

present influence of normal gravity (the sea-level acceleration of 9.8 m/s2). Certain features of the combustion pro-
cesscs arc known to be masked or altered by the ever-present gravity. For instance, laminar ITame speeds are

difficult to measure in the presencc of buoyant convection, especially lbr near-limit flames: and numerical models

normally neglect gravity to locus on the chemical kinetics. Other flames, such as stationary premixed spherical
flames (i.e., flame balls) exist only in microgravity. Also, premixed gas llames can develop a variety of instabilities

driven by hydrodynamic, thermal-diffusion, kinetic, or chemical mechanisms. Experiments in microgravity allow
the isolation of these effects, which are often weak in normal gravity.

Flammability Limits and Flame Balls

Combustible gas mixtures will not burn if sufficiently diluted with excess fuel, oxidant, or incrt gases. The com-

positions delineating flammable from nonflammable gas mixtures are referred to as flammability limits. Studies of

flammability limits are important for assessment of fire safety in many environments and for estimation of the oper-

ating limits of combustion engines. In practice, many factors, such as hydr_xlynamic strain and flame-front curvature
(collectively called "flame stretch"), preferential diffusion, conductive and radiative heat losses, and tlame chemis-

try, interact to affect the flammability limits. The isolation of an individual factor and the determination of its influ-

ence on thc limits are very difficult.

A class of stationary premixed spherical flames, or "flame balls," observed uniquely in microgravity, is con-

trolled exclusivcly by reaction, diffusion, and radiation (fig. 1). The lack of buoyant convection (because the mass-

averaged velocity, i.e., bulk velocity, vanishes everywherc) preserves the spherical symmetry of thcsc flames. Since
there are no external factors, such as heat losses to the burner or confining walls, flame balls provide a suitable con-

figuration for the study of intrinsic flammability limits.
Theoretical analyses predict that stable flame balls occur only in a narrow range of compositions near the lean

limit of mixtures with low Lewis number, such as a lean mixture of hydrogen in air. Experiments confirm the pre-
diction. The nature of the instabilities that exist when these conditions arc not met has also been identified by the

analyses.
Flame-ball experiments, in a project called The Structure of Flame Balls at Low Lewis-numbcr (SOFBALL),

wcre successfully conducted in spacc on Shuttlc Missions STS-83 and STS-94 in 1997. Mixtures of hydrogen, oxy-

gcn, and a third inert component (nitrogen, carbon dioxidc, or sulfur hexafluoride) were burned in the Shuttle Com-
bustion Module-I facility (see appendix A). These mixtures were selccted to cover a wide rangc of Lewis numbers.

A total of eighteen mixtures ignited, and they generated 52 flame balls. Most of the mixtures burned for 5(X) sec

until the experiment timeoul extinguished the flames, more than enough time to verify the steadiness, stability, and
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Figure 1.--Image of multiple flame balls formed in lean
hydrogen-oxygen-diluent atmosphere.

longevity of flame balls. An interesting phenomenon--flame ball drift--was revealed when more than one flame

ball was present in the combustion chamber. New theoretical work explains the motion as being due to enthalpy

gradients imposed by one ball on its neighbors.

Comparisons of predicted flame-ball radii with experiments raise questions on the level of accuracy of the

widely-accepted optically-thin radiation data used for model predictions. In addition, reabsorption of emitted radia-

tion is found to be a dominant effect in mixtures diluted with CO., or SF6; thus, the radiation model itself is of para-
mount importance. Flame-ball properties are computed both with and without inclusion of diluent radiation, to

assess the effect of re-absorption of emitted radiation. For H.,-air mixtures, the computed radiative emission and

lean-limit composition agree well with the flight-experiment data. The flame-ball radii predictions, however, do not

agree with the data. For H2-O2-CO 2 mixtures, the numerical results with and without diluent radiation bracket the
experimental flame-ball radii, total radiation, and lean-limit composition. These observations indicate that better
radiation models, including re-absorption effects, are needed for accurate numerical simulation in these cases. For

hydrogen-air flames, progress has been made in verifying the sensitivity of the flame-ball radius and the value of the

lean and rich flammability limits through calculations based on the hydrogen-air chemistry, the transport model, the
length of the computational domain, and the far-field radiation losses.

Asymptotic analyses show that near-field losses, at distances on the order of the flame-ball radius, are distinct

from far-field losses, at distances large relative to the flame-ball radius. In practice, there is a continuum of losses

covering the near and far fields, which can be represented by a very simple model. The model permits exact solu-

tions, in which the relative magnitude of far-field and near-field losses can be changed by varying the concentration
of water vapor in the far field.

In addition to the flame-ball modeling described above, various other simple systems have been studied analyti-

cally. A model has been developed to help explain the results of experiments performed in the Japanese Micro-

gravity Center (JAMIC) drop tower on the flammability of twin counterflow flames. The model, assuming condi-

tions representative of the experiments performed with methane-air and accounting for both strain rate and radiation

loss, successfully captures the C-shaped quenching boundary found in the experiments. In particular, this model

shows that. for an equivalence ratio greater than a minimum value, there exists a strong-strain limit and a weak-

strain limit, which define the quenching boundaries.

Flame Stability and Propagation

In near-limit mixtures that have a large thermal diffusivity, and thus a large heat loss and large Lewis number,

peculiar modes of flame propagation have been found to occur. Rotating spiral and target patterns have been ob-

served experimentally on freely propagating premixed gas flames in large tubes at normal gravity. The patterns have

also been observed when the conductive heat loss is large, such as on burner-stabilized flames at normal gravity

using mixtures of methane-, propane- and butane-air, all of which have Lewis numbers close to one. However.
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buoyanttlowsstronglydistorttheIlamecurvature,hydrodynamics(thusstretch),andconvectivetransportofspecies
andheat;andthisinturncomplicatesthepatternsandunderlyingreactive-diffusivestructure.

Toisolatethemechanismsthatdrivetheobservedpatterns,researchersareconductingnormal-gravityand
microgravityexperimentstodetermine:(I)thestructureanddynamicsofthepatterns,(2)theconcentrationbounds
ofthecriticalLewisnumberandtheirinfluencesonheatloss,(3)therelativesignificanceofthechemicalkinetics,
and(4)thceffectsofcurvature(localwaveandglobalflamefront)onwavepropagation.

Usingaflame-tubeapparatusandtwohigh-speedintensifiedvideocameras,investigatorshaveobserveddiffer-
entfundamentalmodesofpropagation,dependingontheapproachofthefuelconcentrationtotheflammability
limit.All thedownward-propagatingflamesinvestigatedsupportsingletargetpatterns,whichareradiallypropagat-
ing,concentric-ringwavestravelingat2to3m/s(tig.2).Sometestshavebeendonetoscchowthepatternsew)lvc
altercontactwithabarrier.Innear-limitflames,multipleoriginsitescandevelopsimultaneously.If thewavefre-
quenciesaresimilar,aslateis thenestablishedwherethemultiplesitesandtheirtargetpatternscoexistandcontinu-
ouslyinteractattheirboundaries.Instillleanermixtures,rotatingspiralwavesdevelop(fig.3).Onccformed,thc
twofreeendsofthebrokenringtranslormtotwocounter-propagatingspiralwaves.Asthetlammabilitylimitis
asymptoticallyapproached(towithintheexperimentalaccuracyofthegasmixingsystemXthepatternsoftenappear
spatiallydisorderedandtemporallychaotic,amodesuggestiveof"chemical"or"diffusion-induced"turbulcncc.A
three-dimensional,unsteadynumericalmodelhasbeendevelopedtodescribepremixedcombustion.Totestthe
model,recentstudiesdeterminedtheeffectofgravityonthethree-dimensionalcellularstructureinthecombustion
ofamixtureof9.5percenthydrogen-air.Inflamcsthatpropagatedownward,gravityhasastabilizingeffect.Inthe
absenceofgravity,thellamcinitiatesasasingle,axisymmetricstructure,whicheventuallygrowsanddeformsin
threedimensions,splittingintomultipledistinctcellsastimeelapses.Flamesthatpropagateupwarddisplayboth
Rayleigh-Taylorandthermal-diffusioninstabilitiesinnormalgravity,resultinginfastergrowthratesandlossof
symmetrythaninthemicrogravitycase.Theseinstabilityphenomenacouldbemodeledif calculationsarccon-
ductedinthreedimensionsratherthanintwo.

Figure 2.--Target pattern of downward-propagating flames in a lean mixture of butane-oxygen-
helium. Time between oscillating images is 1/500 sec.

Figure 3.--Rotating spiral-wave pattern of downward-propagating flames in a very lean
mixture of octane-oxygen-helium. Time between wave images is 1/500 sec.
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Figure 4.mExtinction limits for lean methane-air
flames in microgravity from calculations, NASA
and Japanese drop-tower data.

Experiments using a counterflow-combustion system in microgravity have been used to measure the extinction

strain rates tor very lean mixtures that cannot be studied in normal gravity. For methane-air flames, a turning-point

behavior has been found in thc global-extinction strain rate (fig. 4) that agrees with numerical models and data taken
at the JAMIC drop tower.

Premixed flame experiments have been conducted in Hele-Shaw cells in different orientations corresponding to
upward, downward, and horizontal propagation. The results have shown that Lewis-number effects alone cannot

account Ior the flame-wrinkling spectrum, but that thermal expansion and viscous fingering dominate the properties
for stability.

Aqueous autocatalytic chemical-reaction fronts have also been used in Hele-Shaw cells for the experimental

simulation of combustion processes. These reactions exhibit very little density change across the front, have simple

chemistry, are unaffected by heat losses since the front is nearly isothermal, and have high Schmidt numbers, allow-
ing the front to remain "flamelet-like" even in the presence of very strong flow disturbances or turbulence. Analo-

gous to the Saffman-Tayior instability, fingering-type instabilities are observed. Experiments have been carried out

to measure the turbulent burning velocity and to determine the curvature of the front in these cells.

Flame Speeds

Laminar flame speeds are difficult to measure in the ideal sense, since it is not possible to set up a steady one-

dimensional flame that is free from stretch and heat loss. However, a technique has been developed that, for the first

time, can produce a stretch-free, one-dimensional, freely propagating flame lor a short time period. This technique

takes advantage of the fact that a stagnation flame is a positively strained (stretched) flame, and a Bunsen flame is a

negatively strained one. When a flat, strained flame is established in a stagnation-flow configuration, and the dis-

tance between the stagnation plane and the nozzle exit is greater than roughly 1.5 nozzle diameters, a reduction of

the flow rate (strain rate) results in a transition to a Bunsen flame, since the radial pressure gradients are too weak to

sustain a stagnation flow field close to the nozzle exit. Thus, by obtaining a smooth and slow transition from positive
strain rate (stagnation flame) to negative strain rate (Bunsen flame), one can achieve an interval in which the flame

is one-dimensional, freely propagating, and stretch-free. This flame shape allows the direct determination of the true
laminar flame speed.

Experiments were conducted in normal gravity using laser Doppler velocimetry to obtain real-time measure-
ments of the flame centerline velocity. Flame speeds were determined, measurements not obtainable with the tradi-

tional stagnation-flow technique. Furthermore, these values coincide with the values derived by extrapolating the

strained-flame measurements to ultra-low strain rates. Measurements in microgravity are scheduled in the near
future to examine weak flames, which are more prone to be affected by buoyancy.
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Turbulentpremixedflameshavebeenstudiedinplanarandaxisymmetricconfiguration,s.Resultsobtainedin
normalgravityshowthattheflameanglestorrod-stabilizedplanarflamesaredifferentfor+gand-g cases(down-
wardandupwardgravitationalacceleration)andthatthedifferenceisafunctionoftheequivalenceratioandthe
localRichardsonnumber,definedastheratioofbuoyanttoturbulentthrees.Formicrogravityl'lames,theflame
angleisaccuratelypredictedbyalinearextrapolationofthe-g flameanglestoaRichardsonnumberofzero.
Velocitymeasurementsshowasignificantlyhigherdivergencefrommicrogravityforthe+gcase.Flame-surface
wrinklingisalsofoundtobeafunctionofthegravitylevel,andthisindicatesaneedtodevelopanewscaling
parameterforitscharacterization.

Predictionsoftheeffectsofgravityonturbulentflamespeedhavebeenconductedforaturbulentplanar
Couette-flowproblem,usingbothdirectnumericalsimulationandlargeeddysimulation.Innormalgravity,the
densitygradientscausedbyheatreleasetendtocompressandexpandtheflameinupperandlowerregions,respec-
tively;whereasinmicrogravity,themeanflamepropagationisradiallysymmetric.Thenormal-gravityflamehasa
greaterpositivestretchcomparedtothemicrogravitycase.Initialexperimentalresultsshowgoodagreementwith
thesepredictions.

FlameSpread in Nonhomogeneous Mixtures

In contrast to the flames discussed to this point in the section, which assume an initially unifl_rm mixture of fuel

and oxidizer, some flames spread through an initially nonunilorm, although well-characterized, mixture. Sometimes

called "layered systems'" in the literature, such flammable mixtures occur typically in mines, over liquids that are

above their flash points, or in lifted turbulent jet flames. In microgravity, they could occur fl)llowing a flammable

gas leak, propagated by slow ventilation flows or by diffusion.

Gravity can influence the rate of flame propagation in a layered system in at least three ways: through a hydro-

static pressure gradient, through buoyantly induced flows during spread, or through changes in the initial distribution

of fucl vapor. Figure 5 shows a schematic of the model system under study. A layered, flammable mixture is formed

by allowing a liquid to evaporate [br a specified length of time. Flame-spread data have bccn obtained for two fuels,
ethanol and methanol, at a variety of temperatures and diffusion times in normal gravity. Figure 6 shows a typical

flame, which consists of two legs of a triple flame. The flame-spread rate has been shown to be a function of both

fucl temperature and layer thickness (i.e.. diffusion time). A Michelson intcrferomctcr determined the fuel-vapor
concentration ahead of the flame. An interfcrogram analysis technique based on Fourier image processing was

developed to obtain iso-conccntration lines of fuel vapor. Prior to the arrival of the flamc, the lines arc flat, and

they predict the surface concentration well. As the flame approaches, the vapor-concentration lines are pushed up,

making the flammable zone larger.
Also studied are edge flames, which are defined as flame sheets with edges that arise in nonunilk_rm gases. A

one-dimensional model has been developed that includes transverse flow of heat, oxidizer, and fuel. It accurately

describes flame propagation along the flame length. Additionally, the model examines a prcmixed flame located

in a planar counterflow of fresh cold fuel-oxidant mixture and hot inert. There are two stable, one-dimensional

solutions: one characterized by vigorous combustion, and the other by weak combustion.

Closed top _,
\

F-- Open end \ Open end --_
/ \ \

/

Diffusing fuel source--/

Figure 5._Representation of flame propagation
through a layered, non-homogeneous fuel-air
mixture.

/

/

Fuel surface --/

Figure 6._Photograph of a flame propagating through
a layered, non-homogeneous methanol-air mixture.
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Low-Temperature Oxidation Reactions

The perturbing effects of buoyancy at normal gravity complicate nonisothermal studies of cool flames and low-

temperature oxidation reactions in unstirred, closed vessels. While stirring offers the advantage of spatial uniformity

of temperature and concentration, it necessarily destroys the structure that would otherwise occur naturally. Studies

in microgravity are intended for clearer examination of this gradient structure.

Ground laboratory and reduced-gravity (airplane) tests have been conducted using a variety of hydrocarbons

(e.g., methane, propane, butane) diluted with oxygen at temperatures below 600 °C and pressures from 1.3 to

101 kPa ( 10 to 760 torr). Different regimes have been found corresponding to slow reaction, cool-flame devel-

opment and propagation, steady glow, oscillatory glow, two-stage ignition, complete on-off ignition, and oscillatory
ignition.

For both cool flames and "hot" ignitions, two major differences have been tbund to date between their micro-

gravity and normal-gravity behavior. In microgravity, cool flames and hot ignitions propagate spherically from a

centrally located reaction kernel; whereas, in normal gravity, cool flames and hot ignitions exclusively start at the

top of the vessel. The induction time for cool-flame development is shorter in microgravity than in normal gravity,

but the disparity decreases with increasing temperature, perhaps due to different temperature dependencies of the

chemical and the transport times. A quantitative comparison between normal-gravity and microgravity results is

currently underway, and a detailed numerical analysis incorporating both transport and chemical kinetics is being
developed to explain the experimental observations.

Nonpremixed Gas Combustion

Laminar diffusion flames are essential to the fundamental understanding of combustion science. They also are

pertinent to the turbulent diffusion flames of more practical interest via the laminar flamelet concept. The discussion

below covers recent advances in the study of the two main classes of gas-fueled laminar diffusion flames of concern

in microgravity, gas-jet flames and spherical flames, followed by topics in turbulent diffusion flames.

Gas-Jet Flames

Three U.S. spaceflight experiments involved laminar gas-jet diffusion flames: Laminar Soot Processes (LSP),

Transitional and Turbulent Gas Jet Diffusion Flames (TGDF), and Enclosed Laminar Flames (ELF). LSP, flown

aboard Shuttle missions STS-83 and STS-94 in 1997, allowed the first long-term observations (up to 200 sec) of

gas-jet diffusion flames. Although its primary emphasis is soot formation, LSP also examines the structure of lami-

nar diffusion flames. The observed flame lengths are greater than those in corresponding normal gravity, or even

in the short-term low-gravity environments of drop towers and airplanes. The data provide simple expressions lbr

luminous flame lengths and widths. The classical analysis of Spalding, with slight modifications, is tbund to yield
excellent agreement with the luminous shapes of the closed-tip LSP flames.

The primary objective of the TGDF experiment, flown on STS-87 in 1997, is to characterize the processes of

vortex-flame interaction in transitional and turbulent gas-iet diffusion flames. This experiment also measures shapes

and temperatures of laminar diffusion flames and develops a numerical model of laminar gas-jet diffusion flames
that includes radiation.

ELF, flown in the Glovebox facility (see appendix A) aboard STS-87, examines the effects of buoyant con-

vection on the structure and stability of co-flowing diffusion flames. ELF data produce maps of flame stability in

microgravity and in normal gravity. Higher velocities are found to be required for lifloff and blowout of nonbuoyant
flames. The most stable fuel velocities are identified for buoyant and nonbuoyant flames. The experiment showed

the presence of stable, lifted, nonbuoyant flames (at low fuel-flow rates), which is in conflict with theoretical
predictions.

In ground-based experiments, nonbuoyant coflowing flames were studied aboard the KC- 135A airplane. Meas-

urements include CH and OH concentrations from excited-state emissions and gas density from Rayleigh scattering.
In microgravity, the co-flowing flames are shorter and wider with a higher flame-front curvature. The observations

compare favorably with the results of an elliptic model covering 26 species. The microgravity environment enables
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theseparationoffluideffectsfbuoyancy)fromchemistryeffects(atmosphericdilution)inmodelingandverifying
theignitionandflamelift-offpredictions.

Laminar,hydrogen-jetdiffusionflameswereexaminedintheNASA2.2-sdroptowerusingRainbow-Schlieren
deflectometry.Thistechniqueallowsmeasurementofflameboundariesandtemperatures.Inanotherexperimenttor
similarflames,temperaturesweremeasuredusingshear-plateinterferometry.For nonbuoyant gas jets of hydrocar-

bon fuels, flame shapes were determined in tests conducted in an environment that minimized interference from soot

emissions. Flame lengths are lound to be proportional to fuel mass-flow rate, but they are 40 percent longer than

those of corresponding normal-gravity flames. Widths of most nonbuoyant flames are proportional to burner
diameters.

Laminar, gas-jet flames were also studied in the 4.7-s drop tower in Bremen, Germany. The investigations

measure shapes, oxygen concentrations, and temperatures. Results show that many nonbuoyant hydrocarbon diffu-

sion flames are open-lipped, consistent with the observations of previous investigations.

Spherical Flames

Spherical flames are of fundamental importance, because they represent the only stationary, one-dimensional
diffusion flames with infinite boundaries. Although extensive studies of unsteadily burning droplets have been con-

ducted in the past. the investigation of gas-fueled, spherical diffusion flames is a recent development. Spherical

flames require microgravity, but their one-dimensionalily ameliorates some of the diagnostic limitations imposed

by microgravity.

One spherical diffusion-flame study included the effects of radiation, including possible extinction, using cer-

amic spheres in drop-tower tests. The experiments measured temperatures, expansion rates, and radiative emissions,
but results to date are unable to demonstrate radiative extinction.

Another project combined several buoyancy-reducing techniques to create a set of nearly-spherical diffusion

flames in normal gravity. This study resulted in the discovery of a novel, double-concentric diffusion flame. Testing

in the 2.2-s drop lower yielded flame-expansion rates and indicated that test times of at least 10 sec will be required

to establish steady, spherical diffusion flames.

A modeling study investigating the effects of rotation on spherical diffusion flames predicts polar flame holes
and total flame extinction at moderate and high rotational rates, respectively. Other theoretical analyses of the struc-

ture and dynamics of spherical diflusion []ames, using activation-energy asymptotics, examine the consequences of

low fuel-injection rates: leakage of fuel and/or oxidant, quenching, and sur[hce flames.

Flame-Vortex Interactions

Turbulent flames exist in high Reynolds-number, reacting flows in terrestrial applications, and they contain

scales of motion that range from the size of the device down to the microscopic. Buoyancy effects do not occur in

many real devices on Earth because the relatively high speeds make the ratios of turbulent stresses to buoyancy-

induced stresses large. The problem in normal gravity is one of observability of the range of scales. In order to

conduct experiments, large, realistic size scales are desirable. When size scales are expanded, buoyancy must be

considered because of the large temperature and density gradients across the various turbulent structures. Alterna-

tively, if velocity scales are reduced, buoyancy again interferes because the large-scale turbulent stresses responsible

for momentum transport become smaller than the buoyancy stresses. Consequently, it would be desirable to reduce

speeds, while real turbulence and observable size scales are retained. This can be accomplished in microgravity
environments.

Flame-vortex interaction is a fundamental characteristic of turbulent flames. Hence, a number of microgravity

projects are in progress that study the interactions between imposed vortices and premixed and diffusion flames.

Components of flame stretch, strain, and vorlicity are being measured in an axisymmetric configuration, where a

vortex ring interacts with a freely propagating premixed flame. Microgravity is found to significantly increase the

amplitude of flame wrinkling and flame surface area (and, hence, burning rate).
Comparison of experimental results with direct numerical simulations shows good agreement. The results help

delineate different regimes of premixed flamc-w_rtex interactions, namely, weak, intermediate, and strong interac-
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tions,whichcanresultinflameextinction.Numericalcomputationsalsohelpunderstandhowgravityaffectsthe
interactionofaflamewithavortex,asmightoccurinmanyturbulentfields.Inparticular,theinteractionbetween
aone-dimensionalmethane-airflameandavortexismodeledforthreedifferentvortexstrengths.

Forweakvortexstrengths,theflameispushedback,withthegreatesteffectseenontheaxiswherethefluid
velocityinducedbythevortexishighest.Inmicrogravity,theflameremainswrinkledandhassharpcusps.Ina
downward-propagatingflame,buoyancyprovidesastabilizingeffect;theflamedestroysthevortex,andaplanar
flameisre-established.Inanupward-propagatingflame,buoyancyhastheoppositeeffectandisdestabilizing.
Thedisturbancecausedbythevortexisamplifiedbybuoyancy,andalargefingerofcoldreactantsfallsintothe
products.

Forintermediatevortexstrengths,theflameismoredistortedandisextendedfurtheralongtheaxis.Thevortex
getspasttheinitiallocationoftheflameintactandbeginstoentrainthehotproducts.Gravitydoesnotalterthepro-
cesssignificantlybutdoescontrolthefinalflameshape.

Forverystrongvortexstrengths,thefastmovingvortexdragstheflame,extendingit greatlyalongtheaxis.The
strongvortexcausessufficientstrainattheaxisthattheflameisextinguishedlocally.Thevortexthencarriessome
unburnedpocketsofreactantsintotheburntproducts,butthemixtureisnothotenoughtoreactduetoradiative
cooling.Thevortexpassesthroughthecomputationaldomainintact,andgravityhasnoeffect.Forthecasesstudied,
computedflameshapesandinteractionsaresimilartothoseobservedin theexperiments.

Interestingresultshavealsobeenobtainedby"'turningoff' radiationinthemodelduringavortexinteraction.
Theseleadtotheconclusionthattheroleplayedbyradiativelossesinextinguishingthisflameisessential.Inall
cases,irrespectiveofthevortexstrengthortheheatlosses,afiniteamountof timeisrequiredforflameextinguish-
ment,afindingindisagreementwiththeresultsofsteady-stateflame-extinguishmentstudies.

Flame-vortexinteractionshavealsobeenstudiedlbrdiffusion-flameconfigurations.Inarecentlyconducted
flightexperiment,agas-jet flame was subjected to imposed, axisymmetric w)rtex rings. The experiment provides

results on the energy interchange between the flame and the vortices, and on the vortex growth and damping pro-

cesses in the presence of a sheared flow. Another experimental study is investigating the combustion of hydrocar-

bons in a vortex ring. The interactions are found to depend strongly on the vortex-ring circulation and fuel volume

discharged in the ring-formation process.

Microgravity also offers the opportunity to study pulsed flames, for developing universal scaling relations and

tor exploring flame-control techniques. The obtained scaling relations provide information on degree of wrinkling,

the probability of flame curvature, and the stretch distribution along the flame as the strength of the vortices vary.

Turbulent Diffusion Flames

Turbulent diffusion-flame research in microgravity is progressing in a number of areas. Global characteristics of

gas-jet flames, such as flame-height variation with fuel dilution and nozzle size, have been reasonably established

(fig. 7). Work is now underway in the understanding of the turbulence evolution and decay processes (scalar dissipa-

tion) in these flames. Results of numerical simulations indicate that the distribution of the scalar dissipation is sym-

metrical around the flame surface in the nonbuoyant flame but skewed towards the oxidant side in the buoyant,
horizontal flame. The peak of the scalar dissipation, averaged in a horizontal plane, in the buoyant flame is about

twice that in the nonbuoyant flame.

Elliptic nozzles have been used to investigate the three-dimensional flow fields of transitional diffusion flames.

Active control of these flames by means of imposed acoustic excitation results in a split flame configuration that

significantly reduces flame length and sooting. However, the pulsation-induced splitting phenomenon is different for

microgravity, normal gravity, and inverted gravity configurations, indicating the importance of buoyant effects on
the flame.
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Figure 7.--Measured luminous flame heights for propane-oxygen-nitrogen combustion
as a function of injection Reynolds number.

Droplet and Particle Combustion

Isolated Single-Component Droplets

The combustion of liquid hydrocarbon fuels is not only the major source for transportation and electrical-

generation energy in the U.S., but it is also the major source of air pollution. In most applications, the liquid fuel is

burned in the flsrm of" tiny droplets, in order to provide maximum surface area for a given volume ¢5tfuel burned.

Therefore, a thorough understanding of the process of fuel-droplet combustion is of practical importance.
From a scientific point of view, isolated, spherically symmetric, single-droplet burning is the simplest example

of nonpremixed combustion that involves the participation of a liquid phase (fuel) in the gas-phase diffusion flame.

Investigation of the combustion ¢51"single, isolated liquid droplets affords the opportunity to study the interactions of

physical and chemical processes in an idealized and simplified geometrical configuration. In practical sprays,

typical droplet diameters are small, and consequently buoyant fi_rces are small. The time scales associated with the
combustion of these small droplets are also small, which, when coupled with the small size, makes their study in a

normal-gravity environment difficult. The spherically symmetric burning configuration obtained in microgravity
allows researchers to develop detailed theoretical mexlels in a simplified, one-dimensional representation. Also, the

larger length and time scales offered by microgravity droplet combustion allows both transient and quasi-steady

liquid- and gas-phase and flame-extinction phenomena to be studied in detail.
Past experiments in the NASA Lewis (now NASA Glenn) drop towers have established the existence of unique

phenomena related to small droplet combustion in microgravity. These findings include:

• A new slow-burning regime,

• Burning-rate influences of hydrocarbon fuels on soot formation,

• Disruptive burning of initially pure liquid-fuel droplets.
• A lower limiting-oxygen concentration for droplet combustion in microgravity than in normal gravity,

• Spark-droplet interactions in the ignition of the droplet, and

• The identification of product dissolution in the liquid phase of the droplet.
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Thegenerationof isolated, near-motionless droplets in a quiescent environment for combustion studies is

accomplished by a standardized technique in facilities such as drop towers and parabolic-traiectory aircraft. The fuel

is injected from two opposing hypodermic needles, which are then separated to a predetermined length to center the

injected droplet between the needles and finally withdrawn rapidly. Shortly after deployment, the droplet is ignited
using two symmetrically placed hot-wire igniters.

In the period of this review, the Droplet Combustion Experiment (DCE) was conducted successfully on the
Shuttle Mission STS-94 in 1997. The experiment investigates large heptane droplets (1.5 to 5 mm in diameter)

burned in a quiescent oxygen-helium environments over a range of oxygen concentrations and ambient pressures.

Results of the experiment indicate that, under high-oxygen concentrations, the liquid droplet vaporizes completely

and the surrounding flame first grows in size, then decreases to a very small diameter, and eventually extinguishes.

This behavior is called diffusive extinction because the heat loss occurs by diffusion. Under low-oxygen concentra-

tions, the flame grows and then extinguishes at a maximum size, leaving unburned fuel behind in the residual drop-

let. This behavior is called radiative extinction. Under intermediate-oxygen concentrations, initially smaller droplets

exhibit diffusive extinction but larger droplets exhibit radiative extinction. A follow-on DCE, now in preparation,

will incorporate a drop-retrieval mechanism for analysis of the residual, quenched droplets, along with improved
diagnostics.

Isolated, Multicomponent Droplets

Most practical fuels used in boilers, gas turbines, diesel engines, rockets, and so on, are multicomponent mix-

tures. Typical hydrocarbon fuels consist of several hundreds or thousands of components, with a wide boiling range
due to volatility differences, in contrast to a single-component fuel with a specific boiling point.

As a first step toward the understanding of multicomponent droplet combustion characteristics, researchers

study the burning of droplets composed of only two components, but with greatly differing volatilities. Again,

microgravity provides an ideal environment lor the study of bi-component droplet combustion by enabling stable

conditions with relatively large length and time scales. Two phenomena of interest in bicomponent droplet

combustion are the droplet burning history and the possibility of disruptive burning. The burning history of the bi-

component droplet may exhibit three stages, because of the dependence on the liquid-phase mass transport. In the

initial stage of burning, if liquid-phase mass transport is diffusion-limited, the more volatile component will vapor-
ize and burn preferentially. This results in a liquid-phase boundary layer in the droplet, because liquid-phase mass

diffusion is typically slower than droplet regression. With the more volatile component depleted, the second burning
stage follows, with the droplet heating to the boiling temperature of the less volatile component. This is followed by

the third, quasi-steady burning stage. The phenomenon of disruptive combustion, or a "microexplosion," occurs

when a pocket of more volatile fuel is heated above its homogeneous nucleation temperature for bubble formation.

For bi-component droplet combustion, disruptive burning can result if a higher concentration of the more volatile

fuel is trapped at the core of a droplet surrounded by a shell of less volatile fuel and if there is sufficient volatility
difference between the two fuels.

In the period of this review, two successful tests of single- and bi-component droplet combustion were con-

ducted in space. The Fiber-Supported Droplet Combustion Experiment was operated in a glovebox on Shuttle mis-
sions STS-73, in 1995, and STS-94 in 1997. This study burns alcohol and alkane fuels and mixtures in air

environments. The fuel droplets, ranging in initial diameter from 2 to 6 mm, are supported on 80- to 110-1am-

diameter silicon-carbon fibers and ignited using spark electrodes. Results cover the histories of droplet and flame
sizes and their extinction behavior. The most interesting observation in the experiment is that of the interaction of

two droplets, initially about I-cm apart, ignited simultaneously. The droplets are forced apart by the ignition pro-

cess: but, as they burn, they eventually join as twins, due to the effect of the reduced vaporization in the gap between
the droplets.

Spray and Aerosol Combustion

In practical fuel sprays, droplets do not burn individually but interact with one another during combustion. It is

insufficient, then, to base models of fuel-spray combustion entirely on results from single-droplet combustion exper-
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iments.In addition to the limited tests of double droplets in the Fiber-Supported Droplet Combustion Experiment,

three types of studies extend the results of single-droplet combustion studies to more practical fuel sprays.

Two of these studies deal with droplet arrays. Arrays are a collection of a small number of droplets in a con-

trolled configuration that closely simulates an actual fuel spray but is amenable to detailed analytical treatment. Both

studies use fiber-supported droplets (as in the Shuttle experiment cited above), where the separation distance of the

droplets can easily be controlled. One study investigates the individual and merged flames over pure fuels in low-

pressure environments. The second fiber-supported droplet study investigates arrays of pure fuels and hi-component

mixtures in high pressures (above the critical pressure of both fuels), continuing a study of single-droplet com-

bustion of bi-component fuels at high pressures.

A third study examines the combustion of laminar fucl sprays in normal gravity and microgravity in the NASA

Glenn drop lower. Two spray generation techniques are being used. The first is an electrostatic spray, which allows

sell-dispersion of the spray due to coulombic repulsion and control of the droplet trajectories. The second is an ultra-

sonic spray, which allows studies of flame extinction and droplet inleraclion under low-slip conditions (more ame-

nable to numerical modeling). The results from the first technique show an unexpected influence of buoyancy on the

laminar counterflow diffusion flame. In a regime where buoyant effects are expected to be minimal, a laminar coun-

ter-diffusion flame is ignited and stabilized tirst in normal gravity and then exposed to microgravity (the frec-lall).

Instead of remaining fiat. the flame curves in microgravity.

Solid, or dust-particle, combustion has important implications for practical processes and in fire and explosion

prevention. Successful low-gravity experiments have bccn quite limited because of difficulties in stabilizing the

relatively dense arrays. A ground-based experiment in progress seeds methane-air and propane-air opposed-jet

flames with aluminum oxide particles. The purpose of the study is to determine the limits of extinguishment of the

llame as influenced by the particle size ( I to 25 ktm), particle seeding rate, and fuel equivalence ratio.

Recent drop-tower studies in Poland on the combustion of aluminum and cornstarch dust note that peak explo-

sion pressures are greater and ignition delays are shorter in microgravity, due to the unilbrm composition of the ar-

rays and the absence of dispersion-induced turbulence. Another ongoing study on the burning of sub-millimeter

magnesium and zirconium particles in air is discussed in the later section of the review covering metal combustion.

Soot Processes

From an environmental and economic standpoint, soot is an important combustion intermediary and product.

Soot is an aggregate of fine solid particles, comprised of a range of aromatic hydr_x:arbon species. Soot production

is an important pathway for a significant fraction of the fuel in many practical flames: consequently, the soot pro-

cesses must bc defined in order to understand the chemistry and physical transport in these flames. Due to its high

radiative emissivity, soot is a major contributor to the radiative heat loss from a flame: and. as a result, soot Iorma-

tion is a strong positive factor in energy extraction for large-scale boilers and furnaces and a negative factor enhan-

cing flame spread in accidental fires. Soot is an intentional by-product in the manufacture of carbon black, an

industrial product used in tires, plastics, inks, pigments, magnetic tapes, and carbon-fiber matrices.

Microgravity offers a means to improve the understanding of soot processes, because it enables the control of

the combustion flow environment. For example, predictive modeling shows that, due to the lack of buoyant flow, the
soot residence time in laminar gas-jet diffusion flames is of the order of 30 times longer in microgravity than in nor-

mal gravity. The movement of soot through the flame is also strongly affected by microgravity. In normal gravity,

soot forms in the hottest regions on the outside of the buoyant flame and then moves radially inward toward cooler

regions. The soot particles subsequently follow the buoyantly accelerating gas flow until they cross the flame near

the flame tip. In microgravity, soot is formed in the coolest regions, and the particles follow a continuously decelera-

ting flow path through zones of ever-increasing temperature. The longer residence times suggest that broad soot-

containing volumes exist inside the microgravity flame.

Further insights on soot formation in nonbuoyant flames are now available from the Laminar Soot Processes

(LSP) experiment, cited previously in the discussions of laminar gas-jet flames. The long-term, nonperturbed

microgravity environment produces flames that are longer and sootier than those formed in short-term, ground-based

(drop tower or airplane) tests. Observed flame shapes are open- or closed-tipped, depending on the fuel-flow rates.

Tip opening is attributed to quenching of flame reactions due to radiative heat losses. This yields both unburned fucl

and soot. LSP investigators propose that universal state relations can be derived tbr soot properties for all practical

nonbuoyan( diflusion tlames.
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Combustion over Liquid and Solid Fuel Surfaces

Spread Across Liquids

Many aspects of flame spread across flammable liquids are currently not well understood, especially in com-

parison to the state of knowledge of flame spread across solids. When a pool of flammable liquid is ignited, the

flame-spread rate can vary widely depending on the initial liquid temperature, fuel geometry, ambient atmospheric

conditions, and the level of gravitational acceleration. Several phenomena, such as flame-front pulsations, liquid-

phase flow, and gas-phase recirculation are all unique to liquids. However, there is a scarcity of detailed thermal-

and velocity-field data in both the liquid and gas phases and in either normal gravity or microgravity. Such data

would enhance the understanding of these effects and provide "bench-marks" tbr numerical models. Furthermore,

better understanding of the details of the flame-spread process should result in improved safety procedures and haz-

ard assessment in the case of flammable liquid spills both in space and on earth.

Microgravity research on flammable liquid pools is being conducted in the NASA Glenn 5.2-second Zero-

Gravity Facility and aboard a sounding rocket. Early drop tests showed that, in cases where the liquid temperature is

high enough to be in the uniform spread regime, there is little difference in flame-spread rate or character between

normal gravity and microgravity. In contrast, if the fuel temperature or ambient conditions (oxygen concentration or

diluent) are such that the flame would pulsate in normal gravity, it extinguishes in microgravity unless a forced flow

is present.

In 1994, the Spread Across Liquids (SAL) experiment became the first combustion experiment to fly aboard a
sounding rocket, and it has now completed five flights. The first three SAL flights studied the effects of forced

opposed airflow over a 2 cm wide × 30 cm long × 2.5 cm deep pool of I-butanol in microgravity. Results of the tests

show that the flame spread is much slower and steadier than in corresponding normal-gravity conditions (fig. 8). The

microgravity flame lies closer to the surface, and it is dimmer and less sooty than the normal-gravity flame. Three-

dimensional liquid-phase flow patterns that control the liquid preheating are noted in both normal and microgravity.

A two-dimensional numerical model, with single-step chemistry and nonuniform moving grids in both the gas and

liquid phases to track the flame, successfully resolves many of the phenomena seen experimentally, such as the

liquid-phase vortex and the gas-phase recirculation cell. Interestingly, however, the model predicts faster, pulsating

flame spread; and agreement between the model and the experiment can be obtained only by artificially turning off

the gas thermal expansion in the model. This leads to the hypothesis that there is significant lateral gas thermal

expansion in the experiment, which is not being properly modeled.

The subsequent SAL flights, therefore, tocused on the visualization of gas-phase flow patterns using smoke

traces. Indeed, the thermal expansion effect was observed. The presence of a recirculation cell predicted by the

model has also been experimentally verified in front of a spreading flame lor both normal gravity and microgravity
(fig. 9). However. the flow patterns are found to be approximately the same regardless of gravitational level, and the

aforementioned hypothesis remains unproven.

Rosin bead

Fuel surface mm Flame

Time = 1.7 sec

Figure 8.--Images of flame spread over 15-cm wide,
I-butanol pool fire. (a) Normal gravity. (b) Micro-
gravity.

Figure 9.--Smoke-trace visualization of gas-phase
recirculation cell ahead of flame in normal-gravity,
1-butanol pool fire.
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Quiescent Flame Spread Across Solid Surfaces

Truly quiescent environments are achievable only in microgravity, which eliminates the appreciable buoyant

flows always present in normal-gravity flames. Early studies on the combustion of thin-paper fuels under various

oxygen concentrations in quiescent microgravity show that, for atmospheres with high oxygen concentrations, the

flame-spread rate, Vf, is independent of the gravity level. This finding is consistent with a thermal theory of flame
spread for thin fuels, where the flame-spread rate is controlled by gas-phase heat conduction. For oxygen concentra-

tions below about 30 to 40 percent for the paper fuels, however, Vf is lower in microgravity than in normal gravity.

Thus, the limiting-oxygen index (LOI, the lowest oxygen concentration in which a flame will self-propagate) is

higher in microgravity than in normal gravity (i.e.. the flammability range is reduced).

The normal-gravity flame is extinguished by blow-off at low Damkohler number (Do, the ratio of the residence
time in the reaction zone to the time required to complete the combustion reaction). In microgravity, however, since

the residence time of the reactants is long. extinction must be due to another mechanism.

In order to study thickcr solid materials, longer microgravity times than are available in ground-based facilities

are necessary. The Solid Surface Combustion Experiment (SSCE) has flown successfully 1 I times since 1990. In

this experiment, ash-free filter paper or polymcthylmethacrylate (PMMA) samples are burned in a quiescent

microgravity environment to determine the effects of gravity, oxygen concentration, and pressure on the burning

process. The parametric experimental data of flame spread, surface and flame temperatures, and chamber pressure

rise provide a set of observations to benchmark l]ame-sprcad models over a wide set of conditions. Comparisons of

the data to thermally thin combustion models show that radiative heat exchange between the pyrolyzing solid, the

gas-phase flame, and the environment must be included to predict the observed trend of increasing flame-spread rate

with pressure accurately. Furthermore, while a one-step, steady, fuel-pyrolysis model is adequate for normal-gravity

flame spread, an unsteady, multistep pyrolysis model is needed to represent microgravity flame shape, spread, and
extinction.

()thor quicscenl-microgravity experiments, conducted in a short-duration drop tower, examined the effects of

oxygen concentration and atmospheric diluent (CO 2. He, At. or N 2) on quiescent flammability. The results of these

experiments arc presented in a following section.

Opposed-Flow Flame Spread Across Solid Surfaces

Thermally-thin fueis.--Flow-aided flame spread from a central ignition zonc over thin cellulose fuel samples

was studied in the Radiative Ignition and Transition to Flame Spread (RITSI) experiment conducted in a glovebox

on the STS-75 Space Shuttle mission in 1996, and in three campaigns in the 10-see JAM1C drop tower. A focused

beam from a tungsten/halogen lamp ignites the center of a rectangular fuel sample, with an external air flow of 0 to
6.5 cm/s velocity present. The nonpiloted radiative ignition of the paper occurs more readily in microgravity than in

normal gravity. Under all conditions studied, the sample ignites, and the transition to flame spread follows for all

conditions except at the lowest oxygen concentrations and flows. For quiescent conditions (zero air velocity), the

l'lame quickly extinguishes in air, a behavior already expected from results of previous drop-tower work. The

ignition-delay time is linearly dependent on the gas-phase mixing time.
This experiment is also the first to demonstrate the flame-spread preferences of a centrally ignited flame in a

weakly ventilated microgravity environment. Alter ignition, the flame spreads in a fan-shaped pattern in the

upstream direction (towards the flow). The fan angle is directly related to the limiting-flow velocity normal to the

flame front, and it increases with increasing external flow and oxygen concentration (fig. 10).

Downstream flame spread is observed only during the long test times available on the Shuttle tests, after the

upstream flame spread is complete. Despite significant preheating by the upstream t'lame, the downstream l'lame is

not simultaneously viable, due to the depletion of oxygen by the upstream flame, called an "oxygen shadow" by the

RITSI investigators. Linear relationships between imposed flow, concurrent flame-spread rate, and opposed flame-

spread rate are determined from the experiments (fig. 11 ). Note that the data of the figure show that the flame fails to

propagate at very low flows for both upstream and downstream flame spread. This quench-extinction region extends

l'rom velocities ,just below 0.5 cm/s in opposed lupstream) flame spread and below -1.5 cm/s in concurrent (down-

stream) flame spread.
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Figure 10.--Fan-shaped pattern of flame spread over
thin paper from central ignition point in microgravity.
Air flow of 2 cm/s is from right to left,
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Figure 11 .---Summary of flame-spread measure-
ments for centrally ignited paper in microgravity
with external air flow. Positive velocities are for

upstream flame spread (opposed to the direction
of the air flow); negative velocities are for down-
stream flame spread (in the direction of the air
flow). In quench region, flame does not propagate.
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Figure 12.inFlame-spread rate over thermally thick
PMMA slabs. Squares are calculations, diamonds

are buoyant measurements, and circles are recent
measurements in microgravity from DARTFire
experiment.

Thermally-thickfuels.--Opposed-flow flame spread over thermally thick fuels was the focus of a sounding

rocket experiment, Diffusive and Radiative Transport in Fires (DARTFire), which has had lour launches to date,

starting in 1996. Because radiative heat transfer is critical to these microgravity flame-spread experiments, the

DARTFire tests impose an external radiant heat flux on the burning samples and also measure the radiant heat loss.

DARTFire is the first attempt at such experimental control and measurement in microgravity.
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Flamespreadisverysensitivetolow-velocityopposedflow.Theeffectofflowvelocityonflamespreadover
theI to15cm/srangeextendsdatapreviouslyreportedathighopposedflowsbyalmosttwoordersofmagnitude.
DARTFireresultsdemonstratethatevenaflowontheorderofdiffusivevelocities(<2cm/s)issufficienttosustain
combustion.Incontrast,previousexperimentsshowthat,underabsolutelyquiescentconditions,flamespreaddoes
notoccur.Flameextinctionbyflowcessationmaynotbeapracticaloptionforfirecontrol,however,sinceinhab-
ited,poweredspacevehiclesmayalwaysretainsomeatmospherictlowduetocrewmotions,ventilation,andcool-
ingsystems.Flame-spreadratesovermorethanthreeordersofmagnitudeshowapower-lawdependenceonflow,
wheretheexponentontheflowis-0.5forboththe50and70percentoxygendata(fig.12),suggestingarelationto
boundary-layerthicknesses.

Theeffectofexternalheatflux,notedaboveinthedescriptionoftheDARTFiretests,isalsounderreview.
Experimentsselectfluxlevelstooffsetapproximatelyeitherthesurfaceradiativelossaloneorthesurfaceplus
flameradiativeloss.Preliminaryresultsindicatethattheflame-spreadprocessislinearlydependentonthenetheat
fluxfromtheflametothesurface,whichincludesboththeconductiveandradiativecontributions.

Concurrent-Flow Flame Spread Across Solid Surfaces

A study of upward flame spread over solid fuels was conducted to clarify the mechanisms of spread rates lk)r

concurrent-flow l]ame spread and. in particular, the effects of buoyancy. It is proposed that upward flame spread

could be stead5,, because convective losses to the sides of the fuel samples, or surface radiative losses, or both, pre-

vent the flame length and thus spread rate from growing indefinitely. These losses are argued to be unaw)idable

because the flame length will grow until these losses balance the heat-generation rate. Scaling relations arc derived

for the spread rates in the presence of convective and radiative losses, laminar and turbulent flow. buoyant and
forced convection, and thin and thick fuels.

In the period of this review, the Forced Flow Flame Spreading Test (FFFT) was conducted successfully in a

miniature combustion tunnel mounted in a glovebox on the Shuttle mission STS-75 in 1996. The investigation sin-

dies the effects of flow speed and thickness [k)r flat paper fuels, and the effects of flow speed, flow direction, and

initial fuel temperature for cylindrical molded-cellulose fuels. Results report the flame lengths as functions of time.

Although the facility can deliver air flow with velocities up to 8 cm/s, the size of the tunnel limits the useful nnea-

surements of flame length lk)r the flat fuels to velocities no greater than 3 cm/s. The cylindrical fuel tests yield

quantitative results, indicating an increase in flame length with time for increasing air velocity and tk_r increasing

preheat temperature (75 to 135 °C). Consistent with results of other solid-surface tests, the flame extinguishes when
the air flow is shut off.

A similar combustion-tunnel test, conducted on Mir, in 1998. observed the concurrent-flow flame spread across

cylindrical samples of three plastic materials: high-density polyethylene, PMMA, and Delrin. The results, still under
review, indicate that each material has a characterizing limiting-combustion velocity, that is, a minimum concurrent

air flow necessary to maintain flame spread in microgravity.
An overall solid-surface-combustion experimental and analytical project, Solid Inflammability Boundary at

Low Speed (SIBAL), is now in progress. The unique aspect of the experimental project is the use of a moving fuel

surface dispensed from a roll at a rate to match the flame-spread rate. The fuel is a cotton fabric blended with a small
amount of fiberglass. The model is established in terms of a seven-decade range of Grashof number, Gr w, defined as

gW3/v 2, where g is the gravitational acceleration, W the fuel-bed width, and v the kinematic viscosity. Flames are
found to achieve steady values of both spread rate (V r) and flame length when the sample is sufficiently tall. Meas-

ured values of Vf, normalized by the opposed-flow (downward) spread rate for the same atmosphere and fuel bed

(Vf opp ), are shown in Fig. 13. At low Gr w, VetV -opp is proportional to the first power of Gr w, with the value of the
proportionality constant being slightly different I'(_rdifferent atmospheres. At high Gr w. Vf is independent of Gr w,

indicating a transition to radiative-stabilized flame spread. At intermediate Gr w, there is some indication of a region

where Vt/Vfopp - Grw 4° as would be characteristic of turbulent buoyant regime. The data deviate from Vtc'V [ opp -
Grw I behavior towards Vf/Vf,op p - Grw 4/7 near a value of Gr_, .... 20,000, which is analogous to a criterion for'tlae
transition from laminar to turbulent behavior.
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Figure 13.BRatio of concurrent to opposed flame-spread for cotton-fabric fuel as a
function of Grashof number, Grw, defined as gW3/v 2, where g is the gravitational
acceleration, W the fuel-bed width, and v the kinematic viscosity. Various symbols
are for tests covering a range of total pressures, oxygen concentrations, and atmos-
pheric diluents.

Diluent Effects on Flame Spread Over Solid Surfaces

The effects of diluent addition on flame spread over 5-cm wide Kimwipe sheets, 15-cm long, were studied in

normal gravity and quiescent microgravity. In one case, the additives arc the inert gases He, At, N 2, CO 2 and SF 6,
since they provide a variety of radiative properties and Lewis numbers from about 0.3 to 1.4. In a second case, the

additives are sub-flammability-limit concentrations of combustible gases such as CO and CH 4.

In the first studies, for He and N 2 and Ar dilution, the microgravity flame-spread rate, Vf, is always lower than
the normal-gravity spread rate, and the minimum oxygen concentrations to support flame spread are greater in
microgravity than in normal gravity. These results are entirely consistent with prior studies, which conclude that this

behavior is due to the greater radiative heat losses in microgravity. In contrast, for CO 2 dilution, Vf is slightly lower
in microgravity than in normal gravity, but the minimum oxygen concentration is lower in microgravity than in nor-

mal gravity (fig. 14(a)). For SF 6 dilution, Vf is substantially higher in microgravity than in normal gravity for all

oxygen concentrations, and the minimum oxygen concentration is significantly lower in microgravity than in normal
gravity (fig. 14(b)).

Only the H20 and CO 2 combustion products produce significant thermal radiation at flame temperatures. At the

conditions tested in this study, much of the radiation processed can be considered optically thin. However, for CO 2
and especially SF 6 diluents, re-absorption of emitted radiation cannot readily be neglected; and radiation emitted

near the zones of peak temperature may not be lost to the surroundings, which can increase the spread rate above the
rate without radiative transfer.

In the second studies, the additives tor the thin-fuel, flame-spread experiments are sub-flammability-limit con-

centrations of gaseous fuels in O2-diluen[ atmospheres. These conditions represent possible atmospheres encoun-
tered in under-ventilated fires, which can contain substantial concentrations of unburned fuel gases or intermediates,
such as CO.
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Figure 14.--Flame-spread velocities for thin paper in quiescent atmospheres with radiation-absorbing diluents.
(a) Carbon dioxide diluent. (b) Sulfur hexafluoride diluent.

Initial normal-gravity tests show that, for some fuels such as CO and H 2, there is a strong effect of the fuel addi-

tive on Vf, whereas for other fuels such as NH 3, there is practically no effect. Remarkably, for C() fuel (a very im-

portant case for practical applications), it is fi,)und that V r is higher and the minimum-oxygen concentration is tower

when a given number of oxygen atoms in the ambient atmosphere is present in the form of C() rather than oxygen.

In microgravity, the effect of adding gaseous fuel to the ambient atmosphere is qualitatively similar, but the effecl is

stronger in microgravity than in normal gravity. In facl, Vf is actually higher in microgravity than in normal gravity

at high premixed fuel concentrations. Also, the effect of added gaseous fuel is found to be greater at higher oxygen

concentration and with CO fuel. All of these results are consistent with a simple theoretical model that shows the

effect of the premixed fuel is to cause a partially-premixed flame sheet to occur upstream of the conventional

nonpremixed flame. This additional flame increases the total heat flux to the fuel bed and thus Vf.

For diluent-modified atmospheres, steady flame spread is obtainable over thick fuel beds at microgravity condi-

lions even in short duration drop-lower experiments. The highest possible spread rates are found with fuels with low
thermal conductivity and density: and drop-tower experiments on thick sheets of polystyrene, ignited in micro-

gravity, show that combustion can continued for the entire 2.2-see drop.

Low-Stretch Combustion of Solids

In spacecraft, low-velocity flows from ventilation equipment or small cooling fans for electronic hardware can

impinge upon Ilammable surface materials and create low-stretch environments. To study flame structure and

extinction characteristics of these unusual low-stretch flames, researchers generated diffusion flames over cylindri-

cal polymethylmethaerylate (PMMA) samples of varying large radii. These experiments are the first conducted in

normal gravity at such low stretch for a large-scale solid fuel. The results are consistent with characteristics of low-

gravity, low-stretch flames. The only clear gravitational effect noted is fuel dripping, which is inconvenient but does

not change the overall trends provided by the experiment.

The surface regression rates and nondimensional mass burning rates decrease monotonically with stretch rate in

agreement with model predictions. The low-stretch surface regression rates extend the database for PMMA to

quenching extinction, so data are now available from blowoff to quenching. A transition from the blowoff side of
the flammability map to the quenching side of the flammability map is observed at stretch values of -6 to 7 sec -1, as

determined by the nonmonotonic trends in peak temperatures, solid and gas-phase temperature gradients, and
nondimensional standoff distances.

A local extinction limit beyond which a one-dimensional flame canno! exist is found as the stretch rate is

reduced, or solid-phase heat loss is increased, or both. Beyond this limit, smaller, three-dimensional llamelels are

stable. Quenching extinction of the flamelets is found to occur as heat loss increases.

An extensive layer of material above the glass-transition temperature is observed due to the extremely low burn-
ing rates obtained at these very low-stretch conditions. Unique phenomena associated with this extensive glass layer

are substantial swelling of the burning surface, in-depth bubble formation, and migration or elongation of the
bubbles toward the hot surface.
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Figure 15.--Flammability map for low-pressure ex-
tinction of flames spreading radially across PMMA
cylinders with 10 cm/s air cross-flow.

A time-dependent, three-dimensional numerical model is being developed to predict the temperature field,

burning rate, and bubble-bursting characteristics of burning thermoplastic materials in microgravity. The numerical

model includes the dynamics of bubble growth and migration, heat transfer through the condensed material, the

chemistry of gasification, and coupling to the gas phase. The degradation characteristics from the model predictions
arc being compared with experimental results of the combustion of a PMMA sphere in low-gravity tests conducted

on an airplane. Upon ignition, the sample swells, and the outermost surface layer of the burning sample bubbles.

Violent sputtering and ejection of molten polymer from the burning sphere are observed as the gaseous fuel bubbles
from the interior of the droplet reach the surface.

An important fire-safety issue that can be examined in a low-stretch environment is the effect of a forced flow

on a diffusion flame at reduced pressure in low gravity. The phenomena is important for spacecraft fire safety since

the last-resort option for fire control is the use of depressurization (venting) of the spacecraft atmosphere lollowing
abandonment by the crew. A set of recent experiments and numerical simulations examined the effects of reduced

pressure on a low-stretch diffusion flame over small radius PMMA cylinders in a cross-flow (t0 cm/s) in low grav-

ity. During each test, both experimental and numerical, the pressure is slowly reduced until extinction occurred. A

flammability map is created using the experimental extinction pressure and solid-phase centerline-temperature data

at blow-off (fig. 15). The experimental results indicate that a hotter material requires a lower pressure to be extin-

guished. As the solid-phase centerline temperature increases, the extinction pressure decreases, and with a centerline

temperature of 525 K, the flame is sustained to a pressure of 10 kPa (0.1 atm) before extinguishing.

Smoldering

Smoldering is a nonflaming combustion process that takes place in porous-solid combustible materials, and it is

characterized by a heterogeneous surface reaction that propagates within the fuel material. Smoldering is important

both as a fundamental combustion mechanism and as a fire precursor, since fires are often triggered by the transition

from slow smoldering to rapid flaming. Smoldering transport and reaction processes are complex, and the removal
of gravity offers substantial simplifications to their study.

Surface Smoldering

Microgravity smolder spread over a thin cellulosic fuel was studied in the Radiative Ignition and Transition to

Spread Investigation (RITSI) experiment, already cited in the section on flame spread across solid surfaces. Radia-

tive smoldering ignition is initiated by a focused beam from a tungsten/halogen lamp at the center of the smolder-
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Figure 16.--Pattern of smolder-front spread over
treated paper from central ignition point in micro-

gravity. Air flow of 2 cm/s is from right to left.

promoted filter paper. The external air-flow velocity is varied from 0.5 to 6.5 cm/s. This experiment demonstrates
for the first time nonpiloted smoldering ignition of the paper in mierogravity by external thermal radiation.

Although smolder fronts are uniform in convective environments, a complex, finger-shaped char pattern forms

in microgravity. Each "fingertip" has a glowing smolder front that propagates, frequently bifurcates, and occasion-

ally extinguishes (fig. 16). Smolder fronts preferentially propagale upstream into fresh oxidizer. At low imposed

flows, onset of downstream smolder is delayed until completion of upstream smolder, analogous to the RITSI obser-

vations on the combustion of nonsmolder-promoted paper. Normalized smolder area, a ratio of the area smoldered

to the total available area, linearly increases and smolder-front spacing decreases with imposed flow, approaching

unity (uniform front) at velocities of 9 to l0 orals. Average smolder-front width ("fingertip") is independent of flow

velocity. The smolder fronts exhibit bifurcation, merging, and extinction rates that are directly proportional to the
semicircular circumference available for smolder.

Analysis of oxygen transport reveals that each smolder front casts an "'oxygen shadow" that inlluences the oxy-

gen mass flux to adjacent smolder fronts. The oxygen mass flux to each smolder front depends smmgly on the prox-

imity of other smolder fronts and weakly on the nondimensional smolder-spot size.

In-Depth Smoldering

Smoldering combustion has been investigated in three space-flight campaigns. The original study. Smoldering
Combustion in Microgravity, was a Glovebox experiment on Shuttle mission STS-50 in 1992, and it was reported in

the previous microgravity-combustion overview.
A second space experiment, Microgravity Smoldering Combustion (MSC), was flown twice. First, it was oper-

ated in a GASCAN carrier (see appendix A) on Shuttle mission STS-69 in 1995. Next. it was operated in a rack on

the Spacehab-4 Laboratory on Shuttle mission STS-77 in 1996. Tests in the MSC are conducted with cylindrical

polyurethane fuels. 12-cm diameter by 14-cm long, in quiescent and opposed-flow environments, compared to the

8-era-long by 5-era-diameter samples of the first flight experiment.
The MSC tests show that the effect of gravity on smolder is most pronounced under limiting flow conditions,

namely, low flow velocities and oxygen concentrations, and in transitional processes, such as ignition, extinction.

and flaming combustion. In quiescent conditions, the smolder front does not progress beyond the influence of the

igniter. With forced flow, the nonbuoyant smolder propagation becomes stronger than upward smolder in normal

gravity but still weaker than downward smolder.
A significant observation in MSC is that the generation of CO and other light gases is relatively minor. This

finding is in contradiction to the results of the 1992 space experiment, which reported the generation of possibly

hazardous quantities of the light gases. The MSC researchers conclude that the larger sample sizes and more uni-

li)rm air flow through the sample lk_r the later tests reduce heat losses and igniter inl]uences. The MSC results are

considered more representative of spacecraft smolder scenarios.
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Metal Combustion

Metal combustion processes are of considerable interest for applications to such varied fields as solid-rocket

propulsion, oxygen-handling systems, ceramic syntheses, and metal cutting. Metals generally have high boiling tem-

peratures and heats of combustion. Their oxide products also have high boiling temperatures. Hence, while some

metals burn in the vapor phase similar to conventional organic fuels, many metals burn in the solid or liquid phases.
For metals burning in the liquid phase (iron for example), the predominant gravity-induced motion is downward,

i.e., dripping or sedimentation. This is in contrast to the upward buoyant motion of combustion products in vapor-

phase combustion. It is reasonable to expect that the suppression of sedimentation in a microgravity environment
will strongly influence the physical characteristics of metal combustion.

Investigations of metal combustion are conducted with three general types of fuel configurations, (1) bulk

wires, ribbons, and pellets, (2) individual particles, and (3) dispersed-particle arrays.

For bulk-metal configurations, microgravity tests have been conducted on metal rods ignited at the bottom

by a chemical promoter and on 4-mm-sized pellets ignited at the top and side by exposure to lamp radiation. It
is not surprising that the combustion behavior of the two setups is not consistent. Iron-rod tests, carried out in a

100 percent-oxygen atmosphere over a pressure range from 0.1 to 6.9 MPa. show that the solid regression rate,

used as an indication of flame spread, increases with increasing pressure and with decreasing gravity. In microgra-

vity, the melting fuel tbrms a spherical ball adhering to the unburned metal with an elliptical attachment area. The

metal-pellet tests, conducted on titanium and magnesium fuels, established complete spherically symmetric com-

bustion. For this setup, both the flame-spread and fuel-regression rates are significantly less in low gravity, com-
pared to normal gravity.

In the symmetric-combustion metal-pellet studies, the application of advanced diagnostics reveals novel fea-

tures of metal combustion. For example, high-speed cinematography shows new regimes of combustion in which the

accumulation of metal-oxide particles in the reaction zone induces a pulsating combustion process. The enhanced

radiation from the particles increases the heating and expands the fuel and flame size, until the rapid evolution of

metal vapor collapses the flame zone. This cycle is followed by a continuing series of buildups and collapses.

For metal-particle combustion, one study uses an electric arc to generate and ignite a series of particles, typically of

the order of t00 mm in diameter, from a metal ribbon or wire source. Tests with aluminum, titanium, zirconium, and

boron fuels were conducted in a low-gravity airplane laboratory and in normal gravity under air. The combustion

lifetime of these particles is several hundred milliseconds. The apparatus permits the observation of the combustion

process and the collection of quenched particles at any time during the combustion process, for surface and interior

analyses. Two distinct stages arc noted in metal-droplet combustion. The first stage is the physical process of the

formation of a liquid metal-oxygen (and in some cases, metal-nitrogen) solution within the burning droplet. The

second stage is the chemical process of the reaction to tbrm the stoichiometric metal oxide. These stages account.

at least in part. for the brightness variations and "microexplosions" typically observed during the course of metal
combustion.

The minimization of convection flows in low gravity influences the composition and homogeneity of the

reacting and quenched droplets. The experimental combustion times showed reasonable agreement with calculated

times, which are derived from evaporation constants based on the initial particle and atmospheric thermal properties.

For dispersed-particle metal combustion, the microgravity environment is essential. Not only does microgravity

enable the stabilization and control of the particle array for research, but the environment strongly influences the
combustion behavior.

A systematic microgravity study is underway on the physical interaction and combustion behavior of arrays of

relatively large metal particles, 50 to 300 mm in diameter. Since the combustion process itself is very rapid for the
three metals tested, magnesium, zirconium, and titanium, the drop-tower exposure time of 2.2 sec is long enough to

stabilize the array, permit a variable preignition delay time, and complete the combustion process. For magnesium,

the flame-front position in the aerosol indicates that flame speed varies directly with the general motion of the parti-

cles, i.e., it decreases as delay time increases. The recovered burnt particles are slightly larger, on the average, than

the original fuel particles, due to the accumulation of an oxide coating. For zirconium, the recovered burnt particles

are, on the average, two to three times greater in diameter than the unburned particles. Scanning electron-microscope
images of the product zirconia particles show them to be of the form of large agglomerates of multiple joined

spheres. The study of the combustion characteristics and burnt-particle morphology of titanium is now in process.
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Combustion Synthesis

The use of combustion to synthesize improved and novel materials is expanding. Self-propagating high-

temperature synthesis (SHS) is being investigated as a means of preparing a wide range of advanced materials, e.g.,
ceramics, intermetallics, metal-matrix composites, and ceramic-matrix composites. Parameters such as green (reac-

tant) density, reaction stoichiometry, particle size, heating rate, and mode of combustion, coupled with the effect of

gravity, have been found to affect the exothermic SHS reaction and the resulting microstructure and properties of the

synthesized product significantly. Microgravity also offers an opportunity to isolate the coupled effects of pressure

and buoyancy in the flame production of fullcrenes and other nanostructurcs.

Experimental Syntheses of Bulk Materials

In early studies of syntheses in low gravity (airplane facilities), investigators controlled the generation of ( 11

porous ceramic composites by using gasifying agents that lead to "foamed" structures, and (2) dense metal-matrix
composites by using excess metal that melts during the SHS reaction and fills residual pores. For dense metal-

matrix composites, ceramic reinforcing particles have been used that arc either lighter or heavier than the metal

matrix, to study the effects of nonuniform distribution of reinfl_rcing particles in the matrix. SHS reactions con-

ducted in low gravity show the following differences from those conducted under normal gravity or slightly

elevatcd (twice normal ) gravity conditions:

• A decrease in segregation of components in metal-matrix composites,

• An increase in porosity in "foamed" ceramic composites, and

• A wide range of possible microstructures because of the greater control of combustion temperature.

Recent work on the SHS production of a porous B4C-AI203 ceramic, using B2() 3 as a gasifying agent, investi-

gated the control of porosity through variations of pressure, gravity level, and stoichiometry. The strength of the
composite is optimized by the quantity of molten aluminum used to infiltrate the porous ceramic structure. However,
the formation of aluminum oxide at the metal-ceramic interface reduces the ability of the A1 metal to wet and fill the

pores. The alternative of infiltrating the porous ceramic structure with polymers, such as PMMA, shows consider-

able promise. Polymer infiltration of the SHS product decreases its total porosity, but it incrcases the average pore

size by preferentially filling smaller pores, resulting in a composite material with increased strength. Since the poly-

mers used for infiltration are bio-compatible, the product may have a significant application as a bone-replacement

material. The porosity of this material has bccn successfully controlled to a range between 40 to 60 percent, with

pore sizes of 200 to 500 _tm. Such properties are required in order to allow significant blood flow through thc struc-

ture to facilitate high bone-growth rates. The products of this research arc lound to be competitive with currently
used materials by a commercial company that specializes in the synthesis of bone-growth proteinsl Recent research

has also included the synthesis of porous Ti-TiB x composites that are expected to provide an additional range of

bone-replacement materials with substantially higher mechanical properties.
Several classes of heterogeneous-reaction systems were studied in microgravity, using the NASA Glenn

2.2-see drop-tower facility. These combustion syntheses systems ignite metal-powder reactants by a heated filament
under inert-gas atmospheres. Results indicate that composite products produced in microgravity have a uniform

distribution of the refractory phase with fine grain sizes. For example, Ni-A1-Ti-B systems yield TiB 2 grains dis-

persed in a Ni3AI intermetallic matrix that are ~50 percent smaller than those formed in normal-gravity conditions.
Experimental results shown in figure 17 demonstrate the quantitative evolution of grain-size growth, where

quenching distance was controlled by enclosing the reactants in a wedge-shaped space embedded in a brass heat-

sink mass. In other experiments conducted in the same facility, synthesis of freely expanding Ni3AI yielded inter-

metallic foams with porosities of up to 90 percent, without the need lbr gasifying additives, as used in earlicr

syntheses.
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Modeling

Theoretical models are being developed and analyzed to describe the fundamental mechanisms in the SHS and

smoldering processes. Both processes are governed by the same mathematical model, involving multiphase hetero-

geneous combustion in porous media and differing only in scale and in the intended goal of combustion. Smoldering
combustion waves are undesirable, whereas SHS waves are desirable. The analytical and numerical studies focus on

( I ) filtration combustion (FC), in which a gas containing oxidizer flows through a porous medium to the reaction

site, where it reacts with the solid porous reactant, and (2) "liquid flames", which arise, e.g., in high heat-capacity

mixtures, when the porous matrix melts, forming a liquid suspension containing solid particles and gas bubbles.

One modeling result describes a possible fingering instability in FC, in which the interface between the burned

and unburned portions of the sample takes the shape of a propagating finger that occupies only the interior of the

sample and not its surface. Such a combustion wave is more dangerous, from the point of view of fire safety, in that

its combustion velocity exceeds that of the flat interface and the burning is concealed and not easily detected.

Another result describes a new type of FC wave, driven by convection rather than diffusion, which arises due to the

imbalance between the temperatures of the solid and gas phases. These waves propagate much more rapidly than

diffusion-driven FC waves, and they may occur even in mixtures with very low thermal conductivity.

Another model describes the ignition, propagation and stability of "liquid flames". New ignition criteria are

derived, which account for gravity-induced relative motion between the phases and depend on the relative time
scales of reaction and relative motion. In addition, investigators find ( I ) "shock-like" structures for the reactant con-

centrations, (2) a new mechanism of quenching due to significant buoyant compression of the reaction zone, and (3)

a new mechanism of instability due to gravity-induced separation.

Nanostructures

The flame production of both metal and ceramic nanoparticles is being investigated by a process that holds

promise for commercial scale-up. The synthesis involves the encapsulation of extremely fine, reactive nanoparticles

in a protective coating that can be readily removed during subsequent processing. This novel step yields purer and

less-agglomerated materials than can presently be obtained. The flame and encapsulation process is being studied in

microgravity in order to simulate actual conditions realized during spray combustion. Normal-gravity results so far
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demonstratethatmetal(e.g.,aluminum,titanium,tungstenandiron)andceramic(e.g..aluminumnitride,titanium
boridcandsiliconcarbide)nanoparticlescanbeproducedwithflametechnologiesandthattheencapsulationpro-
cessiseffectiveinmaintainingthepurityofthepowders.A novelcomputercodedevelopedtomodeltheparticle-
encapsulationprocessdemonstratesthatencapsulationinflamesisbasicallyatwo-stepprocesswhere,first,asmall
numberofparticlesarccoatedandgrowveryrapidly.Then,theseparticlesactasscavengersimpactingthemetalor
ceramicparticlesandresultinGintheencapsulatedproducts.

Recentstudiesoflaminarpremixcdanddiffusionflamesundernormalandreducedgravityinvariable-pressure
environmentsclarifythechemistryofthefullerenesandothercarbonnanostructures.Thisresearchisalsoexpected
tobenefittheknowledgeofsootformation,becausehigh-molecular-weightGrowthreactionsinvolvinGpolycyclic
aromatichydrocarbonsandacetyleneareintegraltobothsootandcarbonnanostructuresynthesis.

Program Status: Applications to Fire Safety and Other Fields

The primary purpose of microgravity-combustion research is the advancement of fundamental knowlcdge. The

pursuit of information in basic science, however, is often justified by its potential benefits in future applications.
Because combustion is such an important process in a wide variety of essential activities, microgravity-combustion

research should lead eventually to many process and product innovations, improvements, and effieicncies. This

section continues the presentation of the status of microgravity-combustion research and derived knowledge, by

extension to the program area of practical applications. Measurcmcnts and diagnostics for basic and applied com-
bustion studies are considered a separate program area, and discussions of progress in these fields arc reserved for

a later section.

The program area of applications covers the following topics:

• Spacecraft fire safety

• Combustion, processing, and fire safety in future extraterrestrial missions
• Aircraft and terrestrial fire safety

• Commercialization and "'spin-off's"

Spacecraft Fire Safety

Spacecraft fire safety must be founded upon design and operational analyses that identify fire risks and con-

sequences in advance. Since absolute (zero-risk) safety is impractical, risk assessments operate with the objcctivc of

limiting a worst-case scenario to a fire event that may cause the suspension of some operations temporarily but no

human injury nor permanent spacccrafl damage. The implementation of this goal is primarily through fire preven-

tion, which aims simply to eliminate at least one leg of the familiar fire triangle of fuel, ignition, and oxygen. Fire

prevention, however, is never guaranteed. Provisions must also be in place to respond to fire events if they do occur.

All current and proposed human-crew spacecraft are equipped with automated detectors and hand-operated fire

extinguishers.

Spacecraft Experience

Five fire-causing incidents involving component overheating or electrical short circuits have been reported in

the 19 years of operation of the Shuttle Transportation System, which covers a span of more than 90 missions. In all
these incidents, the crew observed the problem and acted to eliminate potential fires by removal of power, without

using the extinguishers. About 15 other anomalies, such as false alarms or detector faults (failure of the built-in test
circuits), have also been recorded in the Shuttle operations. It is generally agreed that the probability of such inci-

dents will increase in the longer and more complex orbital-station (the International Spacc Station, ISS) and

cxtraterrcstrial missions. It is already known that several small fires have occurred in the ten-year span of Mir

orbital-station missions, although documentation of these incidents is sketchy.

The February 1997 fire originating in an oxyGen-generating system on Mir, however, was well publicized
because of the international crew onboard. The Mir fire is an unusual fire scenario thai is highly threatening. The fire
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propagatedinahighlyconvectivelocalenvironmentatanelevatedoxygenconcentration,allofwhicharecondi-
tions that are conducive to fire spread in any gravitational environment. The fire persisted tot a number of minutes

(the exact time of the fire is contradictory in various reports) and rapidly filled the orbital-station atmosphere with
smoke. The crew contained the fire by applying the contents of several aqueous-foam extinguishers, but no doubt

the fire extinguished only when the generated oxygen was depleted. The crew spent more than a day to clean up the

Mir interior of the residues of the fire, smoke, and excess suppressant; but, lbrtunately, the fire caused no permanent
damage.

Risk Assessments

In a quantitative risk-assessment project completed just prior to the reporting period of this review, a study team

established the probabilities of scenarios consistent with Shuttle experience, i.e., electrical-wiring overloads. The
analytical models calculated heat release, mass-burning rate, and smoke and gas evolution for the defined scenarios.

Results of microgravity drop-tower tests showed that strongly overloaded wire insulations readily ignite and pyro-

lyze in microgravity, but the wire-insulation temperatures and the nature of the soot and gaseous-product evolution
all differ from those expected in corresponding normal-gravity conditions. The effects of long-term but moderate

overload levels could not be determined since the experimental phase of the project was not continued into space-
flight testing.

Another project, while not directly aimed at fire-risk assessments, is relevant to the scenario of wire-insulation

degradation in microgravity. A simple experiment examines the quantity, composition, and morphology of the par-

ticles released by overheated wires with fluorocarbon insulations. The results show that, as expected, normal-gravity
overheating tends to produce small-size, individual particles, and low-gravity overheating tends to produce large-

size, agglomerated particles. The unexpected finding of this research is that the particle sizes and morphology gener-

ated in both low gravity and normal gravity by the degradation of the polymers investigated are strong functions of

the color of the insulation, presumably because of the influence of the different dyes in the polymers, even in trace
quantities.

Material Flammability Testing for Fire Prevention

The selection of materials for use in U.S. and European human-crew spacecraft is based largely on test methods

defined in the NASA Handbook NHB 8060. IC. Normal-gravity tests are necessary because the expense and time

for microgravity tests of the thousands of potential spacecraft materials are prohibitive. The principal NASA test

(Test I), which has been in use for over 25 years, determines material acceptability by its resistance to upward

flame spread following chemical ignition. This is obviously a severe test because buoyancy naturally promotes the

fire spread. A similar test (Test 4) is used to determine the acceptability of electrical-wire insulation in a sample

holder that maintains wires or wire bundles at 15 degrees from vertical with ignition at the bottom.

Certainly+ some items that cannot meet the fire-performance standards are necessary and commonly used in

space. Examples are paper, cotton clothing and towels, minor plastic parts+ and data films. Some necessary "off-the-

shelf" appliances with components that cannot be verified for fire resistance have no practical substitutes. These
articles are precisely inventoried for each mission. Techniques to reduce the fire risk of these materials include limi-

tation of quantity and spacing, elimination of fire-propagation paths between articles, and storage in nonflammable
containers or under nonflammable covers.

The upward-flammability test offers advantages for the routine screening of materials. It is a severe "worst-

case" test in terms of ignition energy, means of edge ignition, direction of buoyancy-assisted flame spread, sample

thickness, and oxygen concentration. Results are rarely ambiguous; samples clearly pass or fail. Designers assume

that the normal-gravity acceptance testing provides a margin of safety over the expected diminished fire spread and
flammability of the qualified materials in microgravity. Research in microgravity confirms that this safety factor

exists under quiescent, near-air, microgravity environments. On the other hand, materials under conditions of forced

air flow, such as induced by a ventilation system or crew movement, show increased flammability and flame-spread
rates in microgravity. In general, microgravity flames intensify with increased air velocity, but they tend to extinc-
tion with time as the flow is cut off.
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Severalforced-aircombustion-tunnelfacilitiesarcnowavailableformaterial-flammabilitytestingin
microgravitywithimposedatmosphericIlows,suchastheflightprojectsdiscussedinthesectiononconcurrent-flow
effectsoncombustionoversolidsurfaces.Amongthese,theDARTFireproiectincorporatesimposedflow,atmos-
phericcontrol,andradiantheatfluxasvariablesinflammabilitymeasurements.Resultsonthecombustionofthick
PMMAsheetsconfirmthe strong influence of velocity on flame spread (note fig. 12), although the tests were con-

ducted, for fundamental understanding, at oxygen concentrations considerably higher (35 to 70 percent) than those

in current human-crew spacecraft atmospheres.

The Lateral Ignition and Flame Spread Test (LIFT. ASTM E- 1321 ) is a standard terrestrial method to provide

key information about the ignition and flame-spread characteristics of materials. LIFT differs from the NASA test

methods in that it imposes an external radiant flux on a sample until that sample produces fuel vapors in sufficient

quantity to sustain ignition. The LIFT apparatus, however, relies on gravity for the transport of heat and mass, and

consequently cannot be used in microgravity. A flammability-test apparatus, Flammability, Ignition, and Spread

Tests (FIST), is now in development as a test bed to represent the ambient conditions in space-based environments.

FIST tests will provide information about the ignition delay and the flame spread rate of sheet materials as a func-

tion of an externally applied radiant flux, oxidizer velocity, and oxygen concentration.

Smoke Detection

Automated early warning of fire events in current spacecraft is achieved through smoke detectors. The Shuttle
has nine detector units that sense smoke as a "fire signature" through ionization-current interruption. The U.S., Eu-

ropean, Japanese, and Italian operational segments of the ISS will have one or more detector units in each module

that sense smoke through photoclectric light-beam obscuration and scattering (fig. 18). The photoelectric detector

has recognized advantages over the Shuttle ionization type in its much lower power requirement, slightly lower

mass, and lack of moving parts. The Russian operational segment will have fire-response systems that differ from
those of the other segments. The Russian rnodules were designed independently and in some cases prior to those of

the balance of the ISS. For example, the Functional Cargo Block (Zarva), placed in orbit November 1998, has ten
ionization smoke detectors, which are similar in principle to those on the Shuttle. The Service Module. the primary

Russian element to be launched in late 1999, will have photoelectric detectors (Mir designs), which are closer in

design to the types found on the other ISS segments.

The results of the completed phase of the Shuttle Solid Surface Combustion Experiment (SSCE) on thin-paper

flames now provide new insights on low-gravity flammability and "fire signatures" for detection. Experiment

images show that the flames are nearly undetectable under quiescent, "near-air" conditions, but they become

brighter and yellow at higher oxygen concentrations and total pressures. The SSCE setup did not make it possible to

compare microgravity fire properties to corresponding normal-gravity behavior. Independent low-gravity airplane

tests conducted by the European Space Agency (ESA) show that flames over paper and thin plastic sheets propagate

poorly in quiescent low-gravity air atmospheres, and the resulting flames are nearly invisible with little smoke. With
forced air flows of the order of 10 cm/s, or with increased atmospheric-oxygen concentrations, the flames are bright

and yellow, and they propagate readily.
A practical investigation of microgravity smoke detection was one of the objectives of the Comparative Smoke

Diagnostics (CSD) prc_ject, conducted on the Shuttle mission STS-75, in 1996. The CSD experiment examined the

particulate emissions from typical, well-established pyrolysis or fire events in microgravity. The sources include a

burning candle and four overheated materials, namely, paper (flaming in some tests), silicone rubber.

polytetrafluoroethylene-insulated wires, and polyimide-insulated wires. In the near field (i.e., within the same cham-

ber as the smoke generators), smoke particulates are collected on thermophoretic grids for later analysis, and total

smoke density is measured by laser-light extinction. In the far field (i.e., in a separate chamber connected by a

pumped hose line), smoke-detector response is determined by the responses of a Shuttle detector and a prototype

ISS detector in parallel.

The visible smoke appearance and smoke-particle size distribution in the microgravity tests vary considerably

from those observed in normal gravity. This suggests that the relative response of the spacecraft smoke detectors

may differ considerably between the two environments. Table I is a selected summary of response time to reach an

arbitrary fraction of full scale for each detector in space. It shows that, despite changes in the nature of the smoke

signatures in microgravity, both detectors show adequate, if not entirely optimal, response to most of the fire events.
(The ISS detector is set at a higher sensitivity for the test than will be used in service, however, because it is a

preliminary prototype.)
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Figure 18.DModel of prototype photoelectric smoke

detector for the U.S. and other operational segments

on the International Space Station.

Extinguishment

The prescribed response to a fire event detected by crew senses or a smoke detector is through steps of isolation.

local power shutofL and air-flow cessation. These actions have been adequate to combat all U.S. fire situations to

date. Nevertheless, all current spacecraft are also equipped with fire extinguishers.

The Shuttle has portable fire extinguishers charged with Halon 1301 (bromotrifluoromethane). The manufacture

of this agent, a stratospheric ozone-layer depleter, is now prohibited by international protocol, but existing

suppression systems may be retained. The Shuttle fire extinguishers are supplemented by a fixed, remotely operated

system also charged with Halon 1301, for use during critical periods, such as reentry, when the mobility of the crew

is limited. The nonRussian segments of the ISS will have portable tire extinguishers charged with carbon dioxide.

No centralized, fixed system is planned. The Russian segments of the ISS will have water-loam extinguishers,

equipment already in service in other Russian spacecraft.

The ISS extinguishers are sized to release sufficient carbon dioxide to reduce the local ambient oxygen (in a

rack, tor example) to half its original concentration within 60 sec. The ISS has the option of abandoning a module.

closing its hatches, and venting the module, as a means to control a difficult or inaccessible fire. Proposed venting

capability is the attainment of a total pressure of 30 kPa or less within t0 min.

The determination of the completion of fire extinguishment in spacecraft is by no means straightforward. Since

burned material remains hot in the nonconvective environment, embers may reignite if prematurely exposed to fresh

air. Both the SSCE space-fiight and ESA airplane tests demonstrated that, in low gravity, paper fuels are not com-

pletely consumed as flame passes, hence reignition after apparent suppression is a possibility. SSCE tests with thick

PMMA fuels also show that the flame-propagation rate under quiescent conditions decreases with time, and self-

extinguishment is apparently approached; but the fire may persist for a long period of time.

Considerable cleanup will be required after all fire events, minor or major. Atmospheric revitalization to

remove even trace quantities of fire and extinguishment contamination may tax the environmental controls and

require the use of portable crew-breathing equipment for periods of time. On a longer time scale, the subtle toxic

and corrosive aftereffects of the fire on equipment, systems, and payloads must be recognized and appropriately
control led.

Research information applicable to the suppression of fires in microgravity, to predict the effectiveness and

dispersion of practical agents, is scarce. One set of findings of promise is the interpretation of the results of

NASA/TM-- 1999-209198 28



microgravity studies on atmospheric-diluent effects on thin-sheet fuel flammability. These studies are discussed in
an earlier section of this document on combustion over solid surfaces.

Additional pertinent inlbrmation, in this case on fire extinguishment through depressurization, is also discussed

in the previous section. These tests on the flammability of a PMMA cylinder ignited along the axis with atmospheric

crossflow of" nominally 10 cm/s determine the low-pressure limit tk)r flame extinction. The experimental extinction

boundary is a unique function of the fuel temperature, regardless of gravity level. As fuel temperature increases, the

necessary extinction pressure decreases (that is, extinction becomes more difficult). The investigators note that, for

practical venting in operating spacecraft, rapid venting to a specified final pressure would limit the potential fuel

heating and aid extinguishment. On the other hand, an excessive rate of depressurization may cause substantial

atmospheric flows to intensify the fire.
Earlier ESA airplane tests also investigated the behavior of mixed-phase foams for fire suppression (analogous

to the Russian system on the ISS). Although the foam penetration is different in low gravity compared to normal

gravity, the foam does stick to surfaces, and it successfully suppresses fires by oxygen exclusion.

Extraterrestrial Combustion and Processing

The objective of planned extraterrestrial missions is to establish long-duration, human-occupied bases on the

Moon and Mars. These bases will support diverse operations, such as exploration, planetary sciencc, and propellant

manufacture. A typical mission to Mars requires at least 180 days in transit, and the crew will remain at the Martian

base for over 500 days before returning to Earth. The return vehicle will use methane or carbon monoxide and oxy-

gen propellants, which are manufactured on the planetary surface (in situ). For the planncd extraterrestrial missions,
research on performancc and fire safety in extraterrestrial processing, such as oxidation of habitat/transit solid waste,

in-situ propellant production (ISPP), and combustion processes, are critical concerns.
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TherearevarioustechnologiesavailableforpropellantproductionandlifesupportonMars.Themostcommon
techniquestudiedforISPPprovidesaverycost-effectivesupplyof propellantsbyconvertingcarbondioxide,which
is-95.3percentoftheMartianatmosphere,tousablepropellants.Thetwomostdevelopedconceptsforutilizing
MartiancarbondioxidearetheSabatier/Electrolysis(S/E)processandtheZirconiaSolid-StateElectrolyteprocess.
TheS/EprocessconvertscarbondioxidetomethaneandwaterbyreactingCO2withhydrogen(CO,,+4H2_ CH4
+2H20).Inaseparatestep,thewaterthatisproducedcanbeelectrolyzedtoreleaseoxygen(2H20--42H2 + 02).

The sum of these reactions converts carbon dioxide and hydrogen into methane and oxygen (CO,, + 2H 2 --_ CH 4

+ O2). Oxygen and methane are subsequently liquefied and stored for future use as propellants. The Zirconia process
acquires and compresses the Martian atmosphere and converts it in a reactor to oxygen and carbon monoxide to be

liquefied and stored for future use. The direct conversion of carbon dioxide and hydrogen into methane and oxygen

within a Zirconia cell is also possible, and additional oxygen can also be generated by decomposition of carbon

dioxide. Earlier work at NASA Glenn on liquid carbon monoxide/liquid oxygen propellant combinations has

successfully demonstrated steady combustion in a sub-scale rocket engine, with small amounts of hydrogen present

initially to aid ignition.

Recent studies have provided important information pertinent to fire safety in the extraterrestrial surface opera-

tions. Downward, opposed-flow flame-spread rates over thin-paper fuels as a function of gravitational accelerations

(fig. 19) show that the maximum flame-spread rate occurs near the Martian-surface gravity level (about 0.38 of nor-

real gravity). The flame-spread rate is lower near the lunar gravity level (about 0.17 of normal gravity), but it still

exceeds the rate at normal gravity. A flammability map of oxygen mole fraction as a function of gravity level is

shown in figure 20. Also shown is the U-shaped flammability boundary predicted by a modeling study (dotted line).

It is seen that for downward burning, there is a minimum in the flammability boundary occurring at gravity near the

Lunar- and Martian-surface gravity levels. The most important finding is that flame spread and flammability in

gravity levels of a fraction of normal gravity (here referred to as partial gravity) cannot be predicted simply through

interpolation between measurements obtained in normal gravity and in microgravity.

24

=o
_. 22

g 20

_ 12

10
J_
IZ
In
o 8
E

.2,' eoo • • • ,7_ 10--

-- _ • go DO _/i _ 7

_',_• O • • _ i :_ 6

- ,e .9._..c:_----,:_" ,, _ 50 0 " ,,,-
E

% I

% /
% /

m

6 I , lJl,l,l I J Ikl,l,I I , l_llljl

10-2 10-1 100 101

g/gEarth

/-- Zero-gravity
// limit

z/ 0 Experimental
0 Numerical

Analytical

e_ 4--
0

_ 3--

1 --
I Io I I I I°-"-t

10--6 10-5 10-4 10-3 10-2 10-1 10 0 101

Gravity level, g/g0

Figure 21 .mExperimental and calculated ratios of
radiation heat losses at stated gravity levels (refer-

enced to radiation at go = 9.8 m/s 2 for non-premixed
gas-jet flames.

Figure 20.mExperimental flammability map for
downward burning, thin cellulosic sheets over
a range of gravitational accelerations. Solid

points are flammable conditions for stated levels
of oxygen concentration; open points are non-
flammable conditions. Dotted line is predicted
flammability boundary.

NAS AfI'M-- 1999-209198 30



Anotherresearchstudycoveringarangeofgravitationlevelsisthatof laminar gas-jet diffusion flames in quies-

cent air. Radiative heat transfer has been found to be significantly related to the level of gravitational acceleration

(fig. 21 ). Radiative losses in the Lunar/Martian gravity are almost twice those in normal gravity and approximately

seven times those in mierogravity. This can be explained as the competition among such factors as longer residence

times and accumulated combustion products in microgravity, leading to higher radiative losses and lower overall

temperatures, and the presence of different levels of convective effects in partial and normal gravity, removing the

hot, radiating gases from the flames. It is also found that the buoyancy-dominated flame-flicker in Lunar/Martian

gravity is only a fraction that in normal gravity. The measured flame radiation and t3ame-fliekcr are "fire signatures .+
useful fl)r radiation detectors.

Aircraft Fire Safety

In 1997, NASA, in cooperation with the FAA and other air-transport organizations, announced the initiation (51+

a seven-year aircraft accident-rate-reduction program. One element of the program is accident mitigation, where the

goal is to reduce the accident toll in terms of injuries and fatalities (independently of the reduction in accident rates).

Fire prevention and response are key factors in the mitigation element.

There is a well-recognized synergy among microgravity combustion science, spacecraft fire safety, and aircraft

fire safety. First, spacecraft fire protection is based, to a large extent, on established aircraft standards and practices,

since the transportation modes share features of confined space, hostile external environments, and limited space and

mass allowances for fire-protection resources. In turn, aircraft and terrestrial fire safety can benefit from innovations

and improvements lrom controlled experiments and idealized analyses in microgravity that permit a simplified

representation of the combustion field.

An immediate concern of aircraft fire safety is that of the hazards of the onboard aviation fuel. Two fire sce-

narios are possible: in-flight fuel-tank fires and post-crash spilled-fuel fires. These arc very rare fire events, but they

arc extremely feared and well publicized when they do occur. Research contemplated or in progress to address the

first scenario includes a variety of basic studies of fuel flammability properties, such as minimum ignition energy.

flammability limits, and flash point, as functions of fuel properties and aircraft lank designs and dynamic conditions.

Research proposed to address the second scenario includes basic studies of so-called "fire-safe" fuels, achieved

through modification of fuels as supplied, modification of fuels upon demand+ or automatically actuated suppression

at impact.

Other opportunities for spacecraft fire-safety research applications to aircraft fire safety arc seen in such areas as

the improvement of rate-of-heat-release and l]ame-resistance testing of sheet and insulation materials, in sensitivity

and false-alarm tradeoffs of photoelectric smoke detectors (proposed for aircraft cargo compartments), and in the

evaluation of gaseous and aerosol replacements for Halon fire suppressants.

Terrestrial Applications and "Spin-offs"

While practical benefits on Earth have always been a strong selling points for a variety of space experiments,

applications from combustion studies have been rare, A major step that promises l() expand the opportunities for

"spin-offs'" from microgravity-combustion research has been the establishment of the Center for the Commercial

Application of Combustion in Space (CCACS) in 1996. The Center is operated by the Colorado School of Mines

and supported by NASA and academic, research, and industrial partners.

There are currently seven projects underway at the CCACS, aimed at commercial products in combustion-

synthesized materials, sensors, space-furnace facilities, and catalytic combustors. A project (5t"strong interest to the

microgravity-combustion community is that of water-mist evaluation for space and tcrrestrial fire suppression. An

experiment package, called Water Mist, is being developed for inclusion in the CM-2 facility (see appendix A) on
Shuttle mission STS-107. scheduled rot late 2000. The objective of the experiment is the microgravity stabilization

of the generated mist. which permits the study of the effects of droplet size and concentration on the extinguishment

(51"model propane-air l]ames.
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A study in progress, while strictly computational, holds great promise for practical application to improvements

in booster and upper-stage space propulsion. The analysis calculates the physical characteristics and the time-related

instabilities at the liquid/gas interface of a liquid-propellant combustion system. The study defines regions of stabil-

ity, cellular (classical) instability, and pulsating (a new concept) instability. The innovations in the model are the

incorporation of mass-burning rate dependence on the local pressure and temperature fields and the inclusion of

surface tension, viscosity, and gravity vectors as variables.

Program Status: General Measurements and Diagnostics

The extent of scientific returns from microgravity-combustion experiments is directly related to quantitative

measurement capabilities of meaningful variables. Instrumentation and measurement techniques available for terres-

trial applications must be adaptable to endure the unique and severe operational constraints of microgravity experi-

mentation. Improved understanding of chemical kinetic mechanisms in combustion environments requires accurate

and nonperturbing determinations of flow, temperature and species concentration fields. In concert with other

aspects of microgravity experimentation, the development of diagnostic instrumentation proceeds from basic re-

quirements of the normal-gravity laboratory through those of ground-based facilities to those of spacecraft accom-
modations.

The program area of measurements and diagnostics covers the following topics:

• Velocity
• Refractive index

• Temperature
• Chemical species
• Soot volume fraction and size

Velocity

Measurement of velocity fields in combusting flows provides information on such quantities as residence time.

mixing rates, and the turbulent structure of the flow field. Two complementary techniques for velocity-field determi-

nation under current development at NASA Glenn are those of particle image velocimetry (PIV) and laser Doppler
velocimetry (LDV).

PIV provides instantaneous, full-field velocity measurements. Small seed particles are introduced into the flow

stream, then illuminated with a two-dimensional light sheet several centimeters wide and a few hundred microme-

ters thick. A series of images obtained by recording the light scattered from these particles is then analyzed to deter-

mine the time-dependent particle traiectories. While this type of planar illumination generally provides information
on the two components of velocity lying in the plane of the light sheet, the use of suitably displaced, calibrated cam-

eras can offer three-dimensional measurements. Computer-based techniques for extracting velocity field information

from particle-image sequences have developed along two general trends. Sub-image correlation analyses, usually
employing densely-seeded flows, demonstrate improved accuracy in determining the mean velocity over the subre-

gion, whereas direct trajectory analyses yield more accurate spatial resolution. Recently, a hybrid approach has been

developed, using the results of the correlation analyses to initiate a structured trajectory search. The inclusion of

fuzzy inference techniques results in an efficient algorithm providing both enhanced accuracy and spatial resolution.

Current efforts involve the design of systems employing relatively compact, low-power light sources to provide

measurement capabilities not only tor ground-based facilities, but for eventual use on the International Space Station
laboratories.

While PIV affords instantaneous, full-field capabilities, LDV provides the ability to probe the finer spatial

scales (order of 10 mm) and rapid temporal changes associated with turbulent flows. Similar to PIV, small seed par-

ticles entrained in the flow serve as scattering centers, but for LDV the Doppler shift of the scattered radiation is

utilized to determine the velocity. Because individual particle velocities can be acquired and processed in intervals

as small as 10 ms, line or area scans on time scales that are small in comparison to the temporal evolution of many
flow fields are possible.
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Significanteffiwtshavebeendirectedatrealizingopticalsystemsofsuitablecompactnessandpowerefficiency.
Inthisregard,solid-statecoherentlasersourcesandavalanchephotodiodedetectorsareutilizedtoconstructassem-
bliesthatareonlyafractionofthesizeoftheirconventionalcounterpartsandconsumeonlyafewwattsofelectrical
power.Systemstodateareconfiguredindualbeam,orheterodyne,configurations,therebysuppressingthe high-

frequency optical carrier so that scattered signals on the order of 105 to 106 HTJm/sec are detected and processed.
Mull|component systems have been demonstrated, and the implementation of directionally resolved capabilities is

also in progress. A novel signal processor has also been constructed, taking advantage of recent advances in high-

speed digital signal-processing capabilities. The entire system resides on two 16-bit personal-computer cards, and it

is capable of acquiring, processing, and archiving 105 velocity realizations/see. A series of graphical user interfaces

provides real-time evaluation of triggering levels, processing bandwidths, signal-to-noise ratios, and velocity as
functions of time. Direct memory access also permits on-line data storage for subsequent post-processing, a feature

of significant utility for use in drop towers and reduced-gravity aircraft.

Refractive Index

The determination of refractive-index fields has long been used for both qualitative visualization and quantita-

tive measurement of temperature and density in combustion reactions, or for species concentrations in nonreacting

flows, lnterferometric methods are often used for this purpose, but they can be problematic in microgravity-

combustion science applications, since their phase-sensitive nature requires strict thermal and mechanical stability.
In contrast, deflectometric methods (i.e.. methods that measure the bending of light due to first and second order

refractive-index gradients) can be implemented with reduced complexity, tolerance to dimensional instability, and

adaptation to large fields of view.
A system of this type has been developed at the NASA Glenn Research Center, employing continuously-graded

color filters in a Schlieren configuration. A collimated noncoherent, broad-band light source is used to illuminate the

test section. Alter passing through the combustion field of interest, the deco[limated output is focused onto a filter

possessing a spatially-dependent color-transmission function. Gradients in the refractive index distribution arising
from nonuniform|ties in temperature or species concentration deflect the incident rays of light, altering the position

in which they are intercepted by the color filter. The distribution of hues manifest in the qualitative appearance of

the resulting images affords great detail, owing to the ability of the eye to resolve subtle differences in color. In
addition, the continuous nature of the "rainbow" filter aw_ids truncation and diffraction effects associated with

conventional knife-edges or stops, thereby improving the spatial resolution of the optical system. A simple image-

digitizing and processing system has been developed to quantify the color attributes of the observed images, and,
hence, the ray deflections that produced them. Once quantified, these ray deflections can, in turn. be related to the

afi)rementioned physical quantities of interest. This approach is demonstrated to provide a measurement sensitivity

comparable to that achieved with interferometric methods in determining temperature and species concentrations in

a variety of applications.
Refinements of interferometric flame-visualization methods f_r low-gravity combustion studies are worth not-

ing. A lateral-shearing interferometer is now in use in drop-tower tests. An additional consideration for combustion

experiments is the very high refractive-index gradient, due to the rapid change of temperature at flame front, which

makes data processing via conventional techniques difficult. A modified Fourier transform method for fringe pro-

cessing is developed that relaxes some of the assumptions of the conventional Fourier method, making it suitable for

processing data with large refractive-index gradients.

Temperature

Nonintrusive optical methods of temperature measurement fall into three distinct classes: emission measure-

ments, implicit methods, and spectral methods. Advanced emission pyrometry employs thin (15 jam) silicon-carbide
fibers introduced into the flame front. These fibers have well-characterized emissivity and rapid thermal response,

with minimal disturbance of the phenomena under study. An array of fibers can be constructed to yield two-

dimensional temperature data: the fibers are imaged using conventional coupled-charge cameras or infrared arrays,

depending on the temperature range or spectral interference that may be present. For the Laminar Soot Processes
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Shuttleexperiment,atwo-wave-lengthratiomeasurementin thevisiblespectrumisusedfor.soottemperatures,
basedonverifiedassumptionsofthespectraldependenceoftheemissivityfromsoot.

Implicitmeasurementsoftemperaturearebasedongasdensityorrefractiveindex.Gasdensityuseselastic
Rayleighscattering.Underisobaricconditions,theproportionalityrelationshipofthescatteredintensitytothelocal
gas-phasetemperaturecanbeexploitedtoinfertemperature.Refractive-indexmeasurementsarecurrentlymadeby
theRainbowSchlieren(continuous-colorfiltering)techniquedescribedinaprevioussection.Theline-of-sightna-
tureofthistechniquerelegatesquantitativeapplicationtosimplersystemspossessingsymmetricgeometry.

Spectralmethodsencompassanumberofapproaches.Oneexampleisatunable,pulsedtitanium:sapphirelaser
thatdeterminestemperaturevialaser-inducedfluorescence(LIF).LIFisutilizedin thiscontextbyscanningthe
laseroverseveraltransitionsoriginatingfromdifferentrotationallevelshavingtemperature-dependentpopulations.
Anotherexampleistherapidscanningofanear-IRsolid-statelaserdiodeoverapairof absorptionlinesexhibiting
well-characterizedtemperaturedependence.Liquid-phasethermometryalsousesfluorescenceofadopantintro-
ducedintotheliquid.Ultravioletlightfromasmallnitrogenlaserisusedtoexcitetheground-statemoleculesofthe
dopantcausingfluorescence.Undercontrolledconditions,onecancalibratetheratiooffluorescenceintensitiesbe-
tweenthegroundandexcitedstatestoascertainthedependenceontemperature.

Conventionalmethodsforthedeterminationoftemperatures,suchasthermocouplesandbroad-bandpointradi-
ometers,arealsoofgreatvaluetorcombustiondiagnostics.A rapid-temporal-response(~200ms)thermocouple
techniquehasbeendevelopedforthemeasurementofspatiallyresolvedgas-phasetemperatures.Thismethodis
implementedbybondingfine-gauge,25to75-1Ltm,TypeRjunctionstoaprobeapparatusoriginallydevisedtor
thermophoreticsootsampling.Thefine-gaugejunctionsaresupportedin1.5-mm-diameterceramictubingto
achievestructuralrigidity,lowmass,andminimalthermalconductivity.Thetubinghasapairofinternalpassages,
servingtosupportandinsulatethethermocoupleleads.Byfreelysuspendingthejunction10mmbeyondthefree
endofthetube,theoperatorcanpositionthethermocoupleindifferentlocationsoftheturbulentdiffusionflames
withoutpenetratingtheflamefrontwiththeceramicsupport.Initialanalysisindicatesthatthetemperaturemeasure-
mentsarerepeatableandconsistentwithmodelpredictionsinaturbulentdiffusionflame.Intestsonturbulent
acetyleneflames,sometemporalvariationinresponsewasobservedinthefirstseveralinsertions,attributedtosoot
depositiononthethermocouplejunction.Forsubsequentinsertions,correctionstbrtheradiationlossduetosoot
resultedintemperaturedeterminationsconsistentwithin5°C(fig.22).

1200

1150

::3

1100

¢Z

E

1050

Predicted equilibrium
temperature

Tf = 1160.97 K, run #1
Tf = 1169.45 K, run #2
"If = 1160.82 K, run #3
"if = 1160.81 K, run #4
Tf = 1155.94 K, run #5

I I I1000
100 150 200 250 300

Time, m/sec

Figure 22.--Variation and stabilization of thermocouple response with multiple insertions
into acetylene-oxygen-nitrogen gas-jet flame. Heavy lines are curve fits.
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Conventionalmethodsfordeterminingsolid-phasesurfacetemperaturesarealsoimprovinginaccuracyand
precision.Asasolidburns,it undergoespyrolysis,charformation,andvolatileproduction.Eachprocessinlluences
thefuelsurfaceemissivity,which,foragivenfuel,isafunctionoftemperature,wavelength,andviewingangle.
Infraredsurfacemeasurementsareusuallymadeusingaconstantvalueofemissivitymeasuredatasingletempera-
tureandwavelength,anapproachthatmayleadtoerrorsof 10to 15 percent in the measured surface temperature.

One method measures the temperature and wave-length dependence of the emissivity of solid fuels, such as paper.

This technique involves heating the fuel in a vacuum with an electrical hot plate and imaging its surface with an

infrared camera operating in the 1.8- to 5-1am region. Independent temperature measurements are made using surface

thermocouples. Half of the plate has a high emissivity surface, while the other halt" has a low emissivity. Comparison
of the radiation from the fuel as it is heated by these two different surfaces gives an estimate of the transmittance of

the fuel, thus allowing the determination of the fuel emissivity, transmissivity, and reflectivity. At temperatures

above 600 K, where the fuel undergoes a structural change corresponding to the pyrolysis process, the results show a

sharp drop in the emissivity from roughly 1.0 to 0.75 and an increase in the transmissivity.

For liquid-pool fires, improved surface-ten]pcrature measurements use infrared imaging. In one example, an
infrared camera with a spectral range of 8 to 12 [Jm viewed the liquid-surface temperature field ahead of the flame

over the liquid fuel to provide a quantitative view of the preheating phenomena during flame spread over a range of
air-flow velocities, directions, and gravity levels. The temperature field is also used as a qualitative indicator of liq-

uid flow patterns. The infrared images show that the liquid-surface temperature has a large region of asymmetrical

preheated fluid in the rectangular test channel. The images also show significant side-tlow processes in both normal

gravity and microgravity that cannot be revealed in line-of sight, refractive-index methods, or in thermocouple
measurements. Although a flat flame front is often taken to indicate that llame spread over condensed-phase fuels is

two-dimensional, the infrared images show that this is not necessarily the case.

Chemical Species

A detailed understanding of the combustion process requires a knowledge of the chemical kinetics, energetics,

and equilibria occurring in this complex reactive system. This knowledge must ultimately be grounded in accurate,

spatially and temporally precise measurements of the species present, including reactants, products, and reactive
intermediates. Ideally, the internal energy states of these species should be measured quantitatively as well, as the

molecular internal energy states underlie the energetics and radiative environment that characterize combustion.

This goal, challenging enough in a normal-gravity research laboratory, becomes ever more so with the constraints of

the microgravity environment.
The most detailed results in combustion diagnostics come from spectroscopic measurements. The NASA Glenn

Research Center has a long-standing program in development of diode-laser-based absorption spectroscopy for

quantitative, spatially and temporally resolved detection of important combustion species. The original system that

was developed for drop tower use is configured for water and methane. A recent NASA contract With a commercial

company extends the technique to oxygen through an improved optical layout. The final hardware delivered to
NASA under this contract is now designed for detection of carbon dioxide, as well as for oxygen and other species.

Eventually, improvements will add the detection of the OH radical in the near infrared to this capability, along with

reduction in the size and power draw of the hardware.
NASA research is also improving the technique of video imaging. Spectral filters in the visible, ultraviolet, and

infrared allow line-of-sight averaged images of excited states of radicals such as OH and CH, and stable species

such as H,,O and CO 2. Some recent developments involve electronically-tunable filters, which can be rapidly
switched to permit measurements of several species closely spaced in time. The imaging techniques probe excited

states, showing reactive zones for the radicals and the radiative environment due to the stable species. The absorp-

tion measurements noted above probe ground electronic states and vibrational states of the mo[ecules. Combining

the two measurements of ground and excited states gives more information on flame energetics than is possible by

either technique independently.
The NASA Glenn diagnostics program uses a variety of spectrometers, including a Fourier Transform Infrared

(FTIR) instrument suitable for simultaneous transmission and emission studies of flame species. The combustion

laboratories have an assortment of small spectrometers, including "'spectrometer on a chip" devices in the visible,

near UV, and mid-IR. These small devices are generally rugged and are compatible with both drop-tower and space-

flight design requirements.
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Gaschromatographyhaslongbeenausefullaboratorytoolfordetailedspeciesmeasurements.Thecombustion-
module(CM-1)diagnosticspackage(appendixA)flownontheSTS-94missionin1997,carriedamodifiedgas
chromatograph.Incurrentdevelopmentarefiber-opticchemicalsensorsforavarietyofcombustionspecies.The
fibersensorsareverysmallandlightweight,theyuselittletonopower,andtheyarevibration-,g-load-,andelectro-
magnetic-interference-tolerant.Themostmaturesensortodateisanoxygensensorbasedonquenchingofthefluo-
rescencefromadyemolecule:thisprocessisquantitativeandselectiveloroxygen.Sensorsforotherspecies,
includinghydrocarbons,areunderdevelopmentinthelaboratory.Manyofthesetechniquesareexpectedtobevalu-
ableaswellformulti-sensorfire-detectionsystemstorearlywarningoftheonsetofafireinspacecraft.

Interferometrictechniqueshavealsobeenutilizedforthedeterminationofrefractive-indexfields,mostnotably
acommon-pathconfigurationemployinglocalreference-beamgeneration.Thisarrangementreducesthe
requirementformechanicalstability,sincebothobjectandreferencebeamseffectivelytraceidenticalpaths.A sys-
temofthistypehasbeenusedtodeterminequantitativetemperaturefieldsinmethanolflames,usingconventional
gray-scaletechniquestopertormimage-planephasedeconvolution.

Soot

Soot Volume Fraction

For decades, soot volume fractions in combustion applications were determined through optical-extinction
methods. Current techniques benefit from the use of coherent, monochromatic sources (lasers). These sources offer

advantages of well defined spectral characteristics, critical to the resolution of the spectrally dependent properties of
carbonaceous soot, and precise optical-beam manipulation. Two methods developed lor and demonstrated in micro-

gravity combustion-science applications at NASA Glenn are those of extinction tomography and laser-induced
incandescence (LIl).

The application of the principles of tomography to two-dimensional optical-extinction measurements can

replace conventional, time-consuming sequential point imaging that is unsuitable for short-term microgravity tests.

In a single scan, extinction tomography provides a full-field absorbance at video framing rates. For example, past

studies on laminar acetylene-nitrogen jet-diffusion flames in microgravity show that the soot volume fractions are

higher and extend further spatially, compared to those in normal gravity. Soot particles escape from the tip of the

flame in microgravity, but they are confined to the nonluminous flame in normal gravity.

LIl uses an intense source energy to heat soot to temperatures far above the background. For submicrosecond

laser pulses, the energy-addition rate greatly exceeds the loss rate from thermal conduction, vaporization, or radia-

tion; and it rapidly heats the soot particles. In accordance with the Planck radiation law, the particle thermal emis-

sion at elevated temperatures increases and shifts to the blue compared to nonheated soot and flame gases. The
resultant blue-shifted emission from the laser-heated soot is a function of soot volume fraction, and measurements

show that the Lll signal is linearly proportional to the soot volume fraction. Absolute calibration of the technique is
made by in-situ comparison of the LIl signal to a system with a known soot w)lume fraction. Point measurements

use a photomultiplier tube with spectral and temporal discrimination against natural flame luminosity. One- and
two-dimensional measurements use a gated intensified-array camera.

Figure 23 shows both natural flame and corresponding (simultaneous) LIl images of laminar atmospheric-
pressure diffusion flames of a 50 percent acetylene in oxygen-nitrogen fuel mixture in both normal and micro-

gravity. The volumetric fuel flow rate through the I.l-mm I.D. nozzle is 1.2 cm3/s. Each LIl image is obtained with

a single laser shot, and the image in microgravity image is obtained alter ~ I sec of flame development. In contrast to

the closed-tipped normal-gravity flame, the microgravity flame is open-tipped, emitting soot. In agreement with the

full-field extinction measurement, soot volume-fraction levels are larger in microgravity than in normal gravity. The
soot volume fraction in microgravity reflects a competition between flame temperature and residence time. Lower

flame temperatures result in decreased fuel pyrolysis rates in gas-jet diffusion flames. Absence of buoyancy-induced

convection in microgravity, however, enhances the residence time for fuel pyrolysis and soot inception/growth
reactions.

Since LII is not a line-of-sight technique, it possesses geometric versatility, enabling studies involving heteroge-

neous combustion of liquids or solids. LIl also has high temporal resolution because signals are induced by a single
laser pulse. Even in steady-state gas-jet diffusion flames, LII provides a measure of the soot w_lume fraction,

independent of unknown contributions from scattering by soot aggregates and absorption by polycyclic aromatic
hydrocarbons.
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Figure 23.--Natural images and corresponding laser-

intensified images of acetylene jet flames in normal

gravity, 1 g and microgravity, 0g.
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Soot Size

Detailed interpretation of laser-induced incandescence and other optical measurements of soot depends upon

both the number and size of primary particles composing soot aggregates. Each of these properties also affects the
radiation from flames, often a major energy-loss mechanism in microgravity. Such information also aids in the

understanding of soot nucleation and aggregation processes.

To measure these physical features of soot accurately, one must recover samples of soot. The technique of

thermophoretic sampling utilizes the temperature difference between soot at flame temperatures and a transmission

electron microscopy (TEM) grid, to drive soot to adhere to the grid. In this technique, a sampling grid supported by
a thin probe is rapidly inserted into a flame via air-actuated pneumatic cylinders, where it remains resident for 10 to

500 ms. TEM analysis of the recovered grids is used to visualize the soot aggregates and primary particles and quan-

tify the primary-particle size, aggregate size, and fractal character. In the absence of buoyancy-induced convection

to remove the soot from the flame environment, soot residence times are greatly extended, allowing for continued

growth and aggregation processes. For the simplified flame-transport processes in microgravity, interpretation of
TEM data can serve as input to model the kinetics of soot nucleation and growth processes in flames.

Microgravity-Combustion Program Participation

NASA provides financial and facility support to Principal Investigators (P.I.) in the field of microgravity-

combustion science. Initial proposals for definition studies and subsequent progress are evaluated by the peer-review
process, which addresses the following types of questions:

• ls there a clear need for microgravity experimentation, particularly space-based experimentation'?

• Is the eflort likely to result in a significant advancement to the state of understanding'?

• Is the scientific problem being examined of sufficient intrinsic interest or practical application?

• Is the conceptual design and technology required to conduct the experiment sufficiently developed to ensure
a high probability of success?

Principal Investigators, who may be associated with small and large industrial concerns, nonprofit research
organizations, and U.S. Government agencies, as well as academic institutions, collaborate with a NASA technical

monitor to conduct the necessary research associated with the initial proposals. Preliminary testing in the NASA

Glenn (formerly NASA Lewis) ground-based facilities (drop towers and aircraft) is strongly encouraged in the

"definition-study" phase. If spaceflight experiments are justified, based on the definition study, the P.I. proposes a

sounding rocket, Shuttle, or International Space Station flight experiment in response to a competitive solicitation

(described below). If the P.I. wins a project award through this solicitation, the project becomes a flight candidate.

Soon thereafter, the P.I. presents the detailed objectives, test requirements, and conceptual designs to an independent

peer-review panel, who assess the likelihood of the proposed flight experiment to meet its objectives. If this "'Sci-

ence Concept Review" is successful, NASA assigns a team of engineers and scientists to the multi-year development

of space-flight hardware to meet the specifications of the P.I. NASA continues to support the P.I. throughout this

development period in assisting further research, providing consultation, and guiding the design and safety reviews

prior to spaceflight. The P.I. continues to monitor the experiment during spaceflight, performs the subsequent analy-
ses, and publishes the results (an obligation) in archival journals.

In addition to these spaceflight projects, NASA also supports independent analytical modeling, applied technol-

ogy, and diagnostics research, as well as microgravity experiments that can be completed in the ground-based test
phase in drop towers or in aircraft.

Proposals for either definition (ground-based) study or flight-experiment candidacy are solicited via a NASA

Research Announcement (NRA). The first NRA focusing on microgravity-combustion science was issued in late

1989. It resulted in 13 ground-based and six flight-definition awards out of 65 proposals. The most recent

microgravity-combustion NRA was released in 1997, and it resulted in 41 ground-based and 8 flight-definition

studies. Depending on funding availability, NASA plans to issue an NRA solicitation for microgravily-combustion
science about every two years.

More information about the details of the NASA microgravity support programs and the processes of proposal

submission, progress reviews, and spaceflight project selection is available on the web at http://www.__orc.nasa.gov or
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bywritingtotheMicrogravityCombustionScienceBranch,MS5(X)-115,NASAGlennResearchCenter,21000
BrookparkRoad,Cleveland,()hio44135.

Concluding Remarks

Advancement in combustion-science knowledge is commonly achieved through inference, since the specific

quantities of interest, e.g., various forces, transport rates, and chemical-species concentrations, arc rarely measured

directly. Parametric experiments in which the initial pressure, oxygen concentration, diluent type, flow rate, material

thickness, and geometry are varied seek to improve the level of understanding of controlling mechanisms, chemical
kinetics, and fluid dynamics of flame systems. Microgravity offers an environment wherein the combustion process

can be isolated and simplified in order to control its phenomena and promote its basic study.

The justification of the growing efforts in microgravity-combustion research is given by two objectives of the

NASA strategic plan paraphrased as ( 1) the expansion of scientific knowledge, and (2) the applications to technolo-

gies and assets that promise to enhance the quality of life on earth.
In scientific knowledge, advantage can be made of the predominant feature of microgravity combustion, which

is the near-elimination of buoyancy-induced flows. A new range of velocities between those associated with diffu-

sive and buoyant convective transport (of the order of I to 30 cm/sec) is made available for study by imposing a

known lqow in microgravity or by subjecting the system to partial gravity. Several interacting transport processes

have been identified repeatedly and form common themes to be accounted for in microgravity-flame models and

simulations, for example, diffusional transport of oxygen and products over large spatial scales, radiative heat trans-
fer even in small-sized flames, and hot-gas expansion. The microgravity environment now offers the means for a

straightforward comparison between theory and experiment.
In technology applications, microgravity-combustion research is approaching its goal of developing methods.

databases, and validating tests for enabling increased combustion-system efficiency, reduced pollution, mitigation of

fire risks, and other benefits. Terrestrial interest includes areas such as turbulent combustion, soot processes, spray

combustion, and tlame-based synthesis of high-value materials. Further motivation to perform combustion experi-

ments in space is in the necessity to maintain and improve fire safety aboard human-crewed spacecraft. Many find-

ings from microgravity combustion research are of direct relevance to the NASA material-tqammability and

toxicological-screening test procedures and to the identification of fire signatures, i.e., heat release, smoke produc-

tion, flame visibility, and radiation. Finally, the microgravity program is devising and developing a broad range of
nonintrusive instruments to meet the restrictions of volume, weight, and power, and the high vibratory and shock

loads imposed in all microgravity facilities, from drop towers to the International Space Station.

The progress in microgravity combustion science will be expected to have a major impact on our society.
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APPENDIX A

Facilities

A variety of spacc-flight and ground-based low-gravity facilities is available to researchers. Each has specific

capabilities and characteristics that must be considered by aninvestigator when selecting the one best suited to a

particular type of experiment.

Ground-Based Facilities

Most expcrimenlal microgravity combustion studies to date have been conducted in ground-based facilities.

The principal venues are the two free-fall drop towers at the NASA Lewis Research Center (now the NASA Glenn

Research Center). The smaller facility offers 2.2 sec of microgravily test time for experiment packagcs with up to

150 kg of hardware mass. A schematic diagram of the 2.2-Sec Drop Tower is shown in figure 24. The drop height is

~24 m with a chamber cross-section of 1.5 by 2.75 m. The experiment package is enclosed in a drag shield, which

has a high ratio of mass to frontal area, hence a low drag coefficient. The drag shield/experiment assembly is hoisted

to the top of the building and suspended there by single wire. Release of the wire initiates the drop. As the drag

shield/experiment assembly falls, the experiment package is free to move within the drag-shield cnclosurc, and the

drag forces are negligiblc. Residual acceleration is estimated to be of the order of 10 -5 g. The assembly is deceler-

ated at the bottom by compression of an air bag, limiting the deceleration loads to peak Icvcls ranging from 15 to

25 g. Although thc microgravity time is limited to 2.2 sec, the facility offers advantages of rapid turnaround time

between experiments and low-cost operations. It is often used for proof-of-concept or preliminary experimentation.

The 5.2-Scc Zero Gravity Facility (fig. 25) offers expanded experiment and diagnostic capabilities comparcd to

those available in the 2.2-Sec Drop Tower. The facility is a 6. I-m-diameter steel-walled vacuum chamber, with a

132-m drop distance. Experiment packagcs with up to 450 kg in total mass arc mounted in I -m-diameter carriers
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Figure 26.mPhotograph of typical experiment vehicle

(with combustion-chamber assembly) for use in the

NASA Glenn Zero Gravity Facility.

(fig. 26). Prior to each test, the free-fall chamber is evacuated to a final pressure of about I Pa (10 -2 torr) to elimi-

nate air drag and allow residual accelerations as low as 10 -6 g. The experiment drop is initiated by shearing a bolt in

the release mechanism that suspends the carrier assembly. The carrier falls in the vacuum chamber, and it is deceler-

ated at the chamber bottom by impact into a 6. I -m deep container containing small pellets of expanded polystyrene.

Dedicated jet aircraft flying parabolic (Keplerian) trajectories can provide significant increases in low-gravity

experiment time compared to drop towers, with a penalty of higher residual-gravity levels. For an experiment firmly

mounted to an aircraft bulkhead, accelerations in the range of 10 -2 g can be obtained tbr up to 20 sec. During a

single daily flight sequence, 40 or more sequential parabolic trajectories are possible. While the aircraft traiectories

do not provide true microgravity, they do offer a research venue at low gravity with some advantages over the

conditions in drop towers. Aircraft facilities permit operator interactions, allowing researchers to monitor their

experiments in real-time and to reconfigure them between trajectories. Aircraft also allow researchers to utilize a

wide variety of diagnostic equipment, since delicate equipment is not exposed to the severe shock Ioadings experi-

enced in drop towers.

The NASA KC- 135A research aircraft is shared for testing, with flights originating from both the NASA Glenn

and Johnson centers. While experiment mounts are usually fixed, the large cabin volume, with a floor space of -15.8

by 2.78 m, permits the free-floating of experiments to reduce residual accelerations to the level of 10 -3 g for time

periods of 5 to I 0 sec, depending on the experiment size. Intermediate acceleration levels of less than 0.1 to 0.5 of

normal gravity (partial gravity) can also be achieved in this aircrafl by flying modified trajectories.

Sounding rockets offer advantages of even longer exposures to microgravity. A variety of sounding-rocket car-

riers that can attain altitudes of 30 to 1200 km are available for science payloads. These flights achieve acceleration

environments of the order of 10-4g for 5 to 15 min or longer. Payloads may vary in length, but their diameter is

generally limited to 44 cm (56 cm in a few large rocket assemblies). For payload recovery, parachute systems im-

pose landing loads equivalent to 30 to 50 g.

Most sounding-rocket experiments operate autonomously. Because the sounding-rocket flight lasts on the order

of minutes, it is possible to uplink commands for operation and control and to downlink data, all in real-time. This

capability can provide much flexibility in the design and operation of the experiment.

To date, combustion payloads on sounding rockets have included five in the Spread Across Liquids (SAL)

series and four in the Diffusive and Radiative Transport in Fires (DARTFire) series.

N ASA/TM-- 1999-209198 60



Spaceflight Facilities

While the ground-based facilities of drop towers and aircraft are essential fl)r microgravity experiments in

combustion science, the longer-duration microgravity laboratories of the U.S. Shuttle Transportation System and

the International Space Station, now in assembly, greatly expand the capabilities for investigations. The Shuttle

flight duration for science missions is 7 to 13 days. In Shuttle operations, the drag and gravity-gradient forces limit

the background acceleration to a level of around 10-4 g. In the future, the ISS will provide a similar-quality micro-

gravity environment with test durations of months.
Available and proposed accommodations on the orbital facilities cover a great variety. This review will describe

the range of facilities briefly for the information of the reader. To date, 31 combustion experiments have been con-

ducted on the orbital venues. The leading project, in terms ot" the number of successful missions, is the Solid Surface

Combustion Experiment (SSCE), which has had eleven flights. The SSCE is a self-contained apparatus, usually

mounted and operated in the Shuttle crew compartment, using a mid-deck locker space. Each SSCE flight is dedi-

cated to the measurement of the flame spread over a strip or cylindrical sample at a single condition of atmospheric

oxygen concentration and total pressure.
Most of other combustion flight experiments have been carried in Shuttle payload-bay laboratories. The labora-

tories are pressurized modules connected by an airlock tunnel to the Shuttle cabin. Over 15 payload-bay laboratories
have been flown in Shuttle missions. Most of the experiment space on these laboratories is assigned to biological,

medical, material, and fluid experiments. Since 1992, however, combustion experiments have been conducted

within the United States Mierogravity Laboratories (USML- 1 and USML-2), the United States Microgravity Pay-

load (USMP-3), the SPACEHAB-4, and the Microgravity Science Laboratory (MSL-1). The latter laboratory was

flown originally on Shuttle mission STS-83 in April 1997. The mission was terminated early, prior to the initiation

of most of the experiments. It was then reflown, with the same crew and the same experiments, as Shuttle mission

STS-94 in July 1997. The reflight, which was successful in all its objectives, is unique in the Shuttle program. It is

an indication of the importance of the science contribution to the Shuttle program.
An additional venue fl_r combustion research in space was the Russian Mir Priroda module. As part of the now-

concluded ISS Phase I program, which involved cooperative U.S. testing on the Mir complex, two combustion

projects were included in the suite of experiments brought to Mir during March to September 1996.

Space Accommodations

Several of the orbital accommodations for combustion experiments are worth noting, particularly lor their ver-

satility and their utility for the future. Unique to the Shuttle are the Getaway Special carriers (GASCAN). These are
standardized, sealed volumes used as ballast in the Shuttle payload bay or on attached carriers, sharing available

space with major payloads. The GASCAN experiments are not accessible to the crew, and the), must be automated
and software-controlled. GASCAN space is offered for the most part to student research, but it has been used to date

for two Principal Investigator combustion-science projects, Microgravity Smoldering Combustion in 1995 and
Turbulent Gas-Jet Diffusion in 1997. For the combustion-science experiments, the GASCAN accommodations had

small, sealed chambers, flow systems, sell:contained power, visual and environmental diagnostics, and data

acquisition.
Ten combustion experiments have operated in glovebox facilities, located on several payload-bay laboratories,

the Shuttle cabin, and the Priroda. The most recent glovebox experiment is Enclosed Laminar Flames (ELF), con-
ducted on Shuttle Mission STS-87 in November 1998. The glovcbox provides a sealed working volume in which

small-scale experiments may be conducted (fig. 27). It offers connections for experiment power, video, and mul-

tiple-view still photography and for gas cleanup and filtration systems. The glovebox permits the implementation of
several experiments in the same flight by interchanging experiment packages. Clever design of experinaent packages

also offers the opportunity to conduct multiple-point tests through the protected manipulation by the crew member.

Advanced glovebox designs are now under development for inclusion in several of the ISS modules.

More complex multiuser facilities arc also available for microgravity combustion research. The concept of com-

mon subsystems in hardware development avoids the high cost of repeatedly developing flight-qualified hardware
and extends the useful life of such hardware. For example, The Combustion Module, CM-1, is a multi-user facility

that accommodated two experiments, Laminar Soot Processes (LSP), and Structure of Flame Balls at Low Lewis
Number (SOFBALL) in the noted MSL-1 Shuttle mission with its reflight. The CM-I components are housed in
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Figure 28.--Sketch of Combustion Module, CM-1 with

experiment package being interchanged during
spaceflight.

two adjoining racks. The single rack, shown to the left of the upright researcher in Fig. 28, contains the fluid-supply

package to store and meter fuels, oxidizers, and diluents, and the video-recording equipment. The main double rack

has the experimental combustion chamber, power supplies, experiment processor, diagnostics, and exhaust system.

The flexibility required to perform multiple experiments is provided by mounting each set of experiment-specific

hardware on a structure that can be interchanged and remounted within the double rack during the orbital operations,
as also illustrated in figure 28.

The next version of a shared combustion accommodation will be CM-2, planned lbr flight on the Shuttle pay-

load-bay laboratory, SPACEHAB Research Double Module, in late 2000. The two experiments operated on CM-i

above, LSP and SOFBALL, are designated tbr installation on CM-2 also. Both these experiments take advantage of

ground-based testing to define new experiment requirements and to develop improved test hardware and diagnostics.

For example, LSP-2 will have new cameras and filters for investigation of bright, nonsoot-emitting flames.

SOFBALL-2 will extend its investigation to leaner gas mixtures, requiring improved gas-mixture control, spark

igniters, and exhaust sampling. The SOFBALL-2 diagnostics will include the use of a new color camera, specified
to meet the needs of both SOFBALL-2 and LSP-2.

CM-2 will also accommodate the first flight of Water Mist. a cooperative science and commercial experiment,
aimed at the understanding of water-mist fire extinguishment lbr eventual ground and aircraft service. The Water

Mist investigation requirements and hardware concepts are not complete at this writing, but the plans are to share the
new CM-2 color camera and other components.

NASA/TM-- 1999-209198 62





REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect ot this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1999 Technical Memorandum

4. TITLE AND SUBTITLE

Microgravity Combustion Research: 1999 Program and Results

6. AUTHOR(S)

Robert Friedman. Suleyman A. Gokoglu, and David L. Urban, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. FUNDING NUMBERS

WU- I 01-52_

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-llTI3

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-- 1999-209198

11. SUPPLEMENTARY NOTES

Responsible person, Robert Friedman, organization code 6711, (216) 433-5697.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category: 25 Distribution: Nonstandard

This publication is available from the NASA Center for AeroSpace Information. (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The use of the microgravity environment of space to expand scientific knowledge and to enable the commercial devel-

opment of space tor enhancing the quality of life on Earth is particularly suitable to the field of combustion. This docu-

ment reviews the current status of microgravity combustion research and derived information. It is the fourth in a series of

timely surveys, all published as NASA Technical Memoranda, and it covers largely the period from 1995 to early 1999.

The scope of the review covers three program areas: fundamental studies, applications to fire safety and other fields, and

general measurements and diagnostics. The document also describes the opportunities lbr Principal Investigator parti-

cipation through the NASA Research Announcement program and the NASA Glenn Research Center low-gravity facilities

available to researchers.

14. SUBJECT TERMS

Combustion synthesis: Diffusion flames; Flame propagation', Flammability; Metal combus-

tion; Microgravity applications; Non-intrusive measurements; Premixed flames; Soot

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECU RITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

70

16. PRICE CODE

A04

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std Z39-18
298-102






